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INTRODUCTION	

Volatile	oils	commonly	known	as	essential	oils	
represent	a	diverse	and	chemically	complex	class	
of	 secondary	 metabolites	 synthesized	 by	 plants	
(1).	They	are	typically	composed	of	a	wide	range	of	
low-molecular	 weight	 organic	 compounds,	
predominantly	 belonging	 to	 the	 terpene	 family,	
including	 hydrocarbons	 such	 as	 monoterpenes	
(C10)	 and	 sesquiterpenes	 (C15)	 (2),	 together	with	
their	 corresponding	 oxygenated	 derivatives	 such	
as	 alcohols,	 aldehydes,	 ketones,	 carboxylic	 acids,	
phenols,	 oxides,	 lactones,	 ethers,	 acetals,	 and	
esters	(3).	The	relative	proportions	and	structural	
diversity	 of	 these	 constituents	 vary	 extensively	
among	plant	 species,	 genotypes,	 and	even	within	
different	plant	organs,	imparting	unique	aromatic	
characteristics	and	biological	activities.	In	addition	
to	 their	 olfactory	 and	 sensory	 properties,	 these	
volatile	constituents	play	vital	ecological	roles	in		

	

plant	 environment	 interactions,	 functioning	 in	
defense	 mechanisms,	 pollinator	 attraction,	
allelopathy,	 and	 communication	 with	 symbiotic	
organisms	(4).	

From	 an	 industrial	 and	 pharmacological	
standpoint,	 essential	 oils	 are	 among	 the	 most	
valuable	 natural	 products,	 widely	 utilized	 across	
diverse	 sectors	 including	 perfumery,	 cosmetics,	
food	 flavoring,	 pharmaceuticals,	 and	
aromatherapy.	Their	biological	properties	such	as	
antimicrobial,	antioxidant,	anti-inflammatory,	and	
insecticidal	 activities	 are	 closely	 related	 to	 their	
chemical	 composition	 and	 extraction	 integrity.	
Therefore,	 the	method	employed	 to	extract	 these	
volatile	 fractions	profoundly	 influences	 the	yield,	
purity,	 and	 biological	 efficacy	 of	 the	 resulting	 oil	
(5-8).	
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Historically,	 steam	 distillation	 has	 been	 the	
principal	technique	for	isolating	volatile	oils	from	
aromatic	 plants.	 This	 process	 involves	 passing	
steam	through	plant	material	to	volatilize	essential	
oil	 components,	 which	 subsequently	 condense	
with	 water	 vapor	 upon	 cooling	 (9).	 Although	
simple	 and	 cost-effective,	 steam	 distillation	
presents	 significant	 limitations.	 The	 exposure	 of	
plant	 material	 to	 elevated	 temperatures	 and	
prolonged	 contact	 with	 moisture	 often	 induces	
hydrolytic	 degradation,	 oxidation,	 and	
rearrangement	 reactions,	 particularly	 among	
thermolabile	 and	 oxygenated	 compounds.	 These	
reactions	not	only	reduce	the	overall	yield	but	can	
also	 alter	 the	 characteristic	 chemical	 profile	 and	
sensory	 quality	 of	 the	 oil.	 For	 instance,	 certain	
monoterpenes	 may	 undergo	 isomerization	 or	
oxidation	 during	 distillation,	 leading	 to	 the	
formation	of	artifacts	that	deviate	from	the	natural	
composition	found	in	the	plant	(10-12).	

In	 addition	 to	 distillation,	 solvent	 extraction	
methods	 employing	 organic	 solvents	 such	 as	
hexane,	 petroleum	 ether,	 chloroform,	 or	 ethanol	
have	also	been	developed	 to	recover	volatile	and	
semi-volatile	 compounds	 (13,	 14).	 These	
techniques	 can	 extract	 a	 broader	 spectrum	 of	
constituents,	including	waxes,	pigments,	and	non-
volatile	 components,	 producing	 so-called	
“concretes”	 or	 “absolutes”	 after	 solvent	 removal.	
However,	 this	 approach	 introduces	 multiple	
drawbacks,	including	the	risk	of	solvent	residues	in	
the	 final	 product,	 reduced	 environmental	
compatibility,	and	potential	safety	hazards	due	to	
solvent	 toxicity	 and	 flammability.	 Furthermore,	
solvent	 removal	 is	 an	 energy-intensive	 process	
that	 can	 compromise	 the	 stability	 of	 sensitive	
compounds	(15-18).	These	challenges	have	driven	
the	 development	 of	 alternative	 extraction	
technologies	 that	 are	 both	 environmentally	
sustainable	 and	 capable	 of	 preserving	 the	 native	
chemical	integrity	of	volatile	oils.	

Over	 the	 past	 few	 decades,	 a	 variety	 of	
innovative	 extraction	 techniques	 have	 been	
introduced	 to	 address	 these	 issues,	 including	
microwave-assisted	extraction	(MAE),	ultrasound-
assisted	 extraction	 (UAE),	 pressurized	 liquid	
extraction	(PLE),	and	supercritical	fluid	extraction	

(SFE).	These	methods	share	common	goals	shorter	
extraction	 times,	 higher	 selectivity,	 reduced	
solvent	 consumption,	 and	enhanced	preservation	
of	 bioactive	 constituents	 (19).	 Among	 these,	 SFE	
has	 emerged	 as	 the	 most	 promising	 technique,	
particularly	when	employing	supercritical	carbon	
dioxide	(scCO2)	as	the	extraction	medium	(20,	21).	
The	 advantages	 of	 scCO2	 arise	 from	 its	 unique	
physicochemical	properties	that	combine	gas-like	
diffusivity	 with	 liquid-like	 solvating	 power,	
enabling	 efficient	 mass	 transfer	 and	 selective	
solubilization	 of	 target	 compounds	 under	
relatively	mild	operating	conditions	(22).	Despite	
its	 numerous	 advantages,	 SFE	 also	 presents	
several	 limitations	 that	must	 be	 considered.	 The	
primary	 constraint	 is	 the	 high	 initial	 capital	
investment	associated	with	SFE	equipment,	which	
requires	specialized	high-pressure	vessels,	pumps,	
and	 control	 systems,	 leading	 to	 substantially	
higher	 costs	 compared	 with	 conventional	
extraction	 techniques.	 In	 addition,	 operational	
complexity	and	the	need	for	skilled	personnel	can	
limit	its	widespread	adoption,	particularly	at	small	
or	artisanal	production	 scales.	The	relatively	 low	
polarity	 of	 scCO2	 also	 restricts	 its	 ability	 to	
efficiently	 solubilize	 highly	 polar	 compounds	
unless	 co-solvents	 are	 added,	 which	 may	
complicate	downstream	processing	and	reduce	the	
simplicity	 of	 solvent-free	 recovery.	 Furthermore,	
scale-up	 of	 SFE	 processes	 can	 be	 technically	
challenging,	as	mass	transfer,	pressure	control,	and	
extraction	 kinetics	 may	 differ	 significantly	
between	 laboratory	 and	 industrial	 scales.	 These	
economic	and	technical	considerations	continue	to	
represent	 important	 barriers	 to	 the	 broader	
industrial	 implementation	 of	 SFE,	 despite	 its	
recognized	benefits	in	terms	of	product	quality	and	
environmental	sustainability	(23).	

ScCO2	extraction	has	gained	prominence	due	to	
its	 green	 chemistry	 attributes	 and	 adaptability	
across	a	wide	range	of	plant	materials	(22).	Its	low	
critical	temperature	(31	°C)	and	moderate	critical	
pressure	(73.9	bar)	allow	extraction	of	volatile	oils	
without	 compromising	 thermolabile	 constituents	
(24,	25).	Unlike	traditional	organic	solvents,	CO2	is	
non-toxic,	non-flammable,	 inert,	 inexpensive,	 and	
easily	 separated	 from	 the	 extract	 through	
depressurization,	leaving	no	solvent	residues	(20).	
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Its	 solvating	 strength	 can	 be	 modulated	 by	 fine	
adjustments	 of	 pressure	 and	 temperature,	
enabling	selective	extraction	of	compounds	based	
on	polarity	and	molecular	weight.	When	a	higher	
degree	 of	 polarity	 is	 required	 for	 instance,	 to	
extract	 oxygenated	 monoterpenes	 or	 phenolic	
constituents	small	amounts	of	co-solvents	such	as	
ethanol	or	methanol	can	be	introduced	to	modify	
the	solvent’s	polarity	(20).	

ScCO2	 has	 been	 successfully	 utilized	 in	 the	
extraction	of	essential	oils	from	a	broad	spectrum	
of	 botanicals,	 including	 Citrus	 grandis	 (26),	
Coriandrum	 sativum	 (27),	 Eugenia	 involucrata	
(28),	 Foeniculum	 vulgare	 (27,	 29),	 Mentha	
pulegium	 (27),	 Ocimum	 basilicum	 (30),	 Perilla	
frutescens	 (31),	 Santolina	 chamaecyparisus	 (27),	
Satureja	fruticosa	(27),	Satureja	montana	(27),	and	
Thymus	 vulgaris	 (27).	 Comparative	 studies	
consistently	 indicate	 that	 SFE	 produces	 oils	with	
superior	 quality,	 higher	 yields	 of	 thermolabile	
constituents,	 and	 enhanced	 concentrations	 of	
target	 compounds	 compared	 with	 conventional	
extraction	methods	like	Soxhlet	extraction,	solvent	
maceration,	 or	 steam	 distillation	 (32).	 The	
superior	efficiency	of	SFE	arises	from	its	ability	to	
operate	 under	 finely	 controlled	 conditions	 that	
prevent	 chemical	 degradation	 and	 minimize	
contamination,	 making	 it	 an	 ideal	 approach	 for	
producing	 pharmaceutical	 and	 food	 grade	
essential	oils	(33).	

Principles	of	supercritical	fluid	extraction	

A	supercritical	fluid	is	a	phase	of	matter	existing	
above	its	critical	temperature	and	pressure,	where	
the	 distinction	 between	 liquid	 and	 gas	 phases	
disappears.	 In	 this	 state,	 the	 substance	 exhibits	
intermediate	 properties	 high	 density	 akin	 to	 a	
liquid,	yet	low	viscosity	and	high	diffusivity	similar	
to	 a	 gas	 (22).	 These	 characteristics	 allow	
supercritical	 fluids	 to	 penetrate	 solid	 matrices	
more	effectively	and	dissolve	target	solutes	more	
efficiently	 than	 conventional	 solvents.	 The	
tunability	of	solvent	density	by	adjusting	pressure	
and	 temperature	 provides	 an	 additional	 level	 of	
control	over	extraction	selectivity	(23).	

Various	substances	can	exist	 in	a	supercritical	
state	 and	 serve	 as	 extraction	 solvents,	 including	
ethylene,	 nitrous	 oxide,	 propane,	 sulfur	
hexafluoride,	 methanol,	 water,	 ammonia,	 and	 n-
pentane,	 each	 characterized	 by	 distinct	 critical	
constants	(temperature,	pressure,	and	density),	as	
shown	 in	 Table	 1.	 However,	 CO2	 dominates	
approximately	90%	of	all	SFE	applications	due	to	
its	 ideal	 balance	 of	 critical	 parameters,	 low	 cost,	
safety,	and	ease	of	recovery.  

	

	

Table	1.	Critical	constants	of	selected	solvents	employed	in	SFE	(34)	

Compounds	
Critical	temperature	 Critical	pressure	 Critical	density	

(g/mL)	K	 °C	 MPa	 Bar	(atm)	

Ethylene	 283.0	 9.9	 5.12	 51.2	(50.5)	 0.23	

Carbon	dioxide	 304.1	 31	 7.39	 73.9	(72.9)	 0.47	

Nitrous	oxide	 309.6	 36.5	 7.26	 72.6	(71.7)	 0.46	

Propane	 369.8	 96.7	 4.26	 42.6	(42.0)	 0.22	

Sulfur	hexafluoride	 318.8	 45.7	 3.76	 37.6	(37.1)	 0.75	

Methanol	 513.4	 240.3	 7.99	 79.9	(78.9)	 0.27	

Water	 637.0	 363.9	 22.1	 221.0	(218.1)	 0.32	

Ammonia	 405.4	 132.3	 11.3	 113.0	(111.5)	 0.24	

n-Pentane	 469.8	 196.7	 3.37	 33.7	(33.3)	 0.23	
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The	 phase	 diagram	 of	 CO2	 delineates	 the	
transitions	 among	 its	 solid,	 liquid,	 gaseous,	 and	
supercritical	 states	 as	 a	 function	 of	 temperature	
and	 pressure.	When	 operating	 conditions	 exceed	
31	 °C	 and	 73.9	 bar,	 CO2	 becomes	 supercritical,	
forming	 a	 dense	 fluid	 capable	 of	 dissolving	
nonpolar	and	moderately	polar	solutes	(Figure	1).	
Minor	 adjustments	 in	 temperature	 and	 pressure	
can	 drastically	 alter	 the	 solvent	 density	 and	
solvating	 strength,	 permitting	 precise	 tuning	 of	
extraction	 selectivity	 for	 different	 classes	 of	
volatile	 compounds.	 This	 versatility	 makes	 SFE	
particularly	 suitable	 for	 essential	 oils,	 where	
chemical	 diversity	 and	 volatility	 require	 highly	
controlled	extraction	parameters.	

A	typical	SFE	system	consists	of	a	CO2	reservoir	
connected	 to	 a	 high-pressure	 pump,	 often	
combined	with	a	modifier	reservoir	for	co-solvent	
addition,	which	together	deliver	pressurized	fluid	
to	 the	 extraction	 vessel	 containing	 the	 raw	
material.	 The	 extraction	 vessel	 is	 equipped	 with	
pressure	 and	 temperature	 control	 to	 maintain	
supercritical	conditions.	Downstream,	the	extract-
laden	fluid	passes	through	one	or	more	separators,	
where	 controlled	 depressurization	 and	
temperature	 adjustment	 enable	 selective	
precipitation	 of	 target	 compounds.	 Pressure	
regulators,	 valves,	 and	 gauges	 are	 integrated	
throughout	the	system	to	ensure	stable	operation,	
precise	control	of	extraction	parameters,	and	safe	
recovery	of	both	the	extract	and	recycled	CO2	(35). 	

	
	

Figure	1.	A	phase	diagram	for	CO2 

	
	

Figure	2.	Schematic	representation	of	a	SFE	system.	❶	denotes	the	carbon	dioxide	reservoir,	❷	represents	the	
co-solvent	reservoir,	❸	indicates	the	pump,	❹corresponds	to	the	extraction	vessel,	while	❺,	❻,	and	❼	refer	to	

separator	I,	separator	II,	and	separator	III,	respectively	(35). 
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Factors	affecting	volatile	oil	extraction	by	SFE	

Several	 physicochemical	 and	 operational	
parameters	 govern	 the	 efficacy,	 selectivity,	 and	
chemical	profile	of	volatile	oils	obtained	by	scCO2	
extraction.	 A	 detailed	 understanding	 of	 these	
parameters	 is	 essential	 for	 optimizing	 extraction	
protocols	 to	 maximize	 yield,	 maintain	 chemical	
integrity,	 and	 tailor	 the	 composition	 of	 the	
resulting	 oil	 to	 specific	 industrial	 or	
pharmacological	purposes.	

Pressure	and	temperature	

Pressure	primarily	dictates	solvent	density	and	
solvation	 capacity.	 Higher	 pressures	 typically	
increase	 the	 density	 of	 scCO2,	 enhancing	 the	
solubility	of	nonpolar	 compounds	and	 improving	
extraction	yield.	However,	excessive	pressure	can	
result	 in	 the	 co-extraction	 of	 undesired	
components,	 such	 as	 waxes	 or	 pigments,	 which	
may	 complicate	 downstream	 processing.	
Temperature	 exerts	 a	 dual	 and	 sometimes	
opposing	 effect:	 while	 increasing	 temperature	
reduces	 solvent	 density	 (potentially	 lowering	
solubility),	 it	 simultaneously	 elevates	 the	 vapor	
pressure	 of	 solutes,	 facilitating	 their	 desorption	
and	diffusion	 from	 the	plant	matrix.	 The	balance	
between	 these	 effects	 depends	 on	 the	
physicochemical	nature	of	the	solutes	and	must	be	
empirically	optimized	(23,	35,	36).		

Modifiers	(co-solvents)	

The	 inclusion	 of	 a	 polar	 modifier	 typically	
ethanol,	 methanol,	 or	 water	 can	 substantially	
broaden	the	solvating	range	of	scCO2	by	increasing	
its	polarity	(20,	23).	For	example,	ethanol	has	been	
used	as	a	co-solvent	for	the	extraction	of	volatile	oil	
from	Lavandula	hybrida	(37),	while	methanol	has	
been	 used	 as	 co-solvent	 for	 the	 extraction	 of	
volatile	 oil	 from	 Descurainia	 sophia	 (38).	 This	
facilitates	 the	 extraction	 of	 oxygenated	 and	
phenolic	 constituents	 that	 would	 otherwise	
remain	 poorly	 soluble.	 However,	 an	 excessive	
modifier	 concentration	 may	 adversely	 alter	 the	
phase	behavior	of	the	system	or	reduce	selectivity	
(23,	39).		

Extraction	time	

The	duration	of	extraction	influences	both	total	
yield	 and	 compositional	 balance.	 Shorter	
extraction	periods	favor	highly	volatile	compounds	
such	 as	 monoterpenes,	 whereas	 prolonged	
extraction	 enhances	 recovery	 of	 heavier,	 less	
volatile	 constituents	 like	 sesquiterpenes	 and	
oxygenated	 derivatives.	 Thus,	 extraction	 time	
should	be	optimized	to	balance	yield,	quality,	and	
process	economics	(23,	40).	

Flow	rate	of	supercritical	fluid	

The	 flow	 rate	 of	 the	 supercritical	 solvent	
determines	 solvent	 residence	 time	 and	 mass	
transfer	kinetics.	Lower	flow	rates	promote	higher	
solute–solvent	 interaction	 and	 more	 efficient	
extraction	per	unit	of	CO2,	while	higher	flow	rates	
shorten	 extraction	 time	 but	 may	 compromise	
efficiency	 (36,	 41,	 42).	 As	 observed	 in	 the	
extraction	of	volatile	oil	from	Coriandrum	sativum,	
a	 flow	 rate	 of	 0.79	 kg/h	 resulted	 in	 a	 higher	
extraction	 yield	 than	 flow	 rates	 of	 1.10	 and	 1.59	
kg/h	(43).	

Particle	size	of	plant	material	

The	 size	 of	 plant	 particles	 directly	 affects	
diffusion	 and	 solvent	 accessibility.	 Reducing	
particle	size	 increases	surface	area	and	enhances	
mass	transfer;	however,	excessively	fine	powders	
can	lead	to	packing	issues,	channeling,	and	uneven	
solvent	flow.	Optimal	particle	sizes	typically	range	
between	0.3–1.0	mm,	 though	 this	varies	by	plant	
species	(23,	44,	45).	For	example,	a	mean	particle	
size	of	0.4	mm	for	Thymus	vulgaris,	compared	with	
0.6	and	0.8	mm,	showed	the	highest	extraction	rate	
for	 volatile	 oil	 extraction	 (46).	 However,	 the	
optimal	 particle	 size	 differed	 among	 individual	
volatile	 oil	 components	 in	 Coriandrum	 sativum	
(43).	
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Moisture	content	

Moisture	 acts	 as	 a	 polar	modifier,	 influencing	
the	 partitioning	 behavior	 of	 solutes.	 Moderate	
water	 content	 facilitates	 the	 extraction	 of	 polar	
constituents	 by	 increasing	 system	 polarity,	 but	
excessive	moisture	reduces	solubility	of	lipophilic	
compounds	due	to	phase	separation	into	aqueous	
and	 supercritical	 phases.	 The	 matrix’s	 moisture	
level	 must	 be	 lowered	 to	 below	 15%	 prior	 to	
treatment	 (23).	 Hence,	 controlling	 moisture	
content	 within	 an	 optimal	 range	 is	 crucial	 to	
maximize	both	selectivity	and	yield	(47,	48).	

CONCLUSION		

SFE,	 particularly	 with	 scCO2,	 represents	 a	
highly	 efficient,	 tunable,	 and	 environmentally	
sustainable	method	 for	volatile	oil	 recovery	 from	
plant	materials.	By	carefully	adjusting	parameters	
such	 as	 pressure,	 temperature,	 co-solvent	 type,	
extraction	 time,	 flow	 rate,	 particle	 size,	 and	
moisture	content,	 it	 is	possible	to	maximize	yield	
while	 preserving	 the	 chemical	 integrity	 of	 target	
compounds.	 The	 flexibility	 of	 SFE	 makes	 it	
applicable	 across	 a	 wide	 range	 of	 botanical	
sources,	 and	 its	 environmentally	 benign	 nature	
positions	 it	 as	 a	 preferred	 technology	 for	
producing	 high-quality	 volatile	 oils	 in	 both	
research	 and	 industrial	 contexts.	 Future	
developments	 in	process	modeling,	 scale-up,	 and	
co-solvent	 strategies	 are	 expected	 to	 further	
enhance	 the	 efficiency	 and	 selectivity	 of	 this	
technique.	
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