From Tradition to Therapy: Plectranthus amboinicus as a Remedy for Respiratory Inflammation
Main Article Content
Abstract
The respiratory tract is the anatomical pathway through which air travels during respiration and plays a critical role in gas exchange. While inflammation is a necessary immune response for combating infections in this system, severe inflammation can be detrimental and even fatal. Pathogenic microorganisms frequently expose the respiratory tract, necessitating a prompt and robust immune response, particularly through inflammation, to swiftly eliminate these threats. To reduce the intensity and duration of pulmonary inflammation, extensive research has been conducted to explore the pathophysiological mechanisms and therapeutic strategies associated with lung inflammation. Among these strategies, natural products have garnered significant attention for their chemical composition and pharmacologic properties, particularly their potential therapeutic applications in treating respiratory inflammation. Traditional herbal remedies widely use Plectranthus amboinicus because of its effectiveness in reducing respiratory inflammation. Numerous studies have demonstrated the potential of this plant for treating pulmonary disorders because of its phytochemical and pharmacognostic properties, specifically the activity of its essential compounds against airway inflammation. This review focuses on the phytochemistry, extraction techniques, phytocompound analyses, pharmacological activities in respiratory disorders, and clinical efficacy of P. amboinicus as a conventional herbal treatment for lung inflammation.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Journal of TCI is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence, unless otherwise stated. Please read our Policies page for more information.
References
Moldoveanu, B., et al., Inflammatory mechanisms in the lung. J Inflamm Res, 2009. 2: p. 1-11.
Nakata, K., et al., Augmented proliferation of human alveolar macrophages after allogeneic bone marrow transplantation. Blood, 1999. 93(2): p. 667-73.
Toossi, Z., et al., Decreased production of TGF-beta 1 by human alveolar macrophages compared with blood monocytes. J Immunol, 1996. 156(9): p. 3461-8.
Moore, S.A., et al., Expression and regulation of human alveolar macrophage-derived interleukin-1 receptor antagonist. Am J Respir Cell Mol Biol, 1992. 6(6): p. 569-75 DOI: 10.1165/ajrcmb/6.6.569.
Zlotnik, A. and O. Yoshie, Chemokines: a new classification system and their role in immunity. Immunity, 2000. 12(2): p. 121-7DOI: 10.1016/s1074-7613(00)80165-x.
Frevert, C.W., et al., Functional characterization of rat chemokine macrophage inflammatory protein-2. Inflammation, 1995. 19(1): p. 133-42 DOI: 10.1007/bf01534386.
Chalmers, S., et al., Diagnosis and treatment of acute pulmonary inflammation in critically ill patients: The role of inflammatory biomarkers. World J Crit Care Med, 2019. 8(5): p. 59-71 DOI: 10.5492/wjccm.v8.i5.59.
Lukhoba, C.W., M.S.J. Simmonds, and A.J. Paton, Plectranthus: A review of ethnobotanical uses. J Ethnopharmacol, 2006. 103(1): p. 1-24 DOI: https://doi.org/10.1016/j.jep.2005.09.011.
Gurgel, A.P.A.D., et al., In vivo study of the anti-inflammatory and antitumor activities of leaves from Plectranthus amboinicus (Lour.) Spreng (Lamiaceae). J Ethnopharmacol, 2009. 125(2): p. 361-363. DOI: https://doi.org/10.1016/j.jep.2009.07.006.
Arumugam, G., Swamy, M.K., and Sinniah, U.R., Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance. Molecules, 2016. 21(4): p. 369. DOI: 10.3390/molecules21040369.
Fasal, P.P., Therapeutic potential of Plectranthus amboinicus (Lour) in respiratory disorders. Pharm Innov, 2023. 12(6): p. 3264-3271.
de Medeiros Gomes, J., et al., Seasonal Variations of Polyphenols Content, Sun Protection Factor and Antioxidant Activity of Two Lamiaceae Species. Pharmaceutics, 2021. 13(1). DOI: 10.3390/pharmaceutics13010110.
Ashaari, N.S., et al., Chemical Composition of Hexane-Extracted Plectranthus amboinicus Leaf Essential Oil: Maximizing Contents on Harvested Plant Materials. Appl Sci, 2021. 11(22): p. 10838.
Chauhan, A.K., et al., Potentiation of macrophage activity by thymol through augmenting phagocytosis. Int Immunopharmacol, 2014. 18(2): p. 340-6. DOI: 10.1016/j.intimp.2013.
025.
Vigo, E., et al., In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A.1 murine macrophages. J Pharm Pharmacol, 2004. 56(2): p. 257-63. DOI: 10.1211/0022357022665.
Braga, P.C., et al., Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacology, 2006. 77(3): p. 130-6. DOI: 10.1159/000093790.
Marsik, P., et al., In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med, 2005. 71(8): p. 739-42. DOI: 10.1055/s-2005-871288.
Liang, D., et al., Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation, 2014. 37(1): p. 214-22. DOI: 10.1007/s10753-013-9732-x.
Kumaran, A. and Karunakaran, R.J., Activity-guided isolation and identification of free radical-scavenging components from an aqueous extract of Coleus aromaticus. Food Chem, 2007. 100(1): p. 356-361. DOI: https://doi.org/10.1016/
j.foodchem.2005.09.051
Wadikar, D.D. and Patki, P.E., Coleus aromaticus: a therapeutic herb with multiple potentials. J Food Sci Technol, 2016. 53(7): p. 2895-2901. DOI: 10.1007/s13197-016-2292-y.
Gupta, S., et al., Phenolic constituents and biological activities of leaf extracts of traditional medicinal plant Plectranthus amboinicus Benth (Lamiaceae). TANG, 2013. 3. DOI: 10.5667/tang.
0027.
Imran, M., et al., Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother, 2019. 112: p. 108612DOI: 10.1016/j.biopha.2019.108612.
Azevedo, M.I., et al., The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol Pain, 2013. 9: p. 53. DOI: 10.1186/1744-8069-9-53.
Gurgel, A.P., et al., In vivo study of the anti-inflammatory and antitumor activities of leaves from Plectranthus amboinicus (Lour.) Spreng (Lamiaceae). J Ethnopharmacol, 2009. 125(2): p. 361-363. DOI: https://doi.org/10.1016/j.jep.
07.006.
Satria, D., Hasibuan, P.A. and Sitorus, P., Anticancer activity of Β-sitosterol from Plectranthus amboinicus (Lour. Spreng.) leaves: In vitro and in silico studies. Asian J Pharm Clin Res, 2017. 10: p. 306. DOI: 10.22159/ajpcr.2017.v10i5.16931.
Ashaari, N.S., et al., Functional characterization of a new terpene synthase from Plectranthus amboinicus. PLoS One, 2020. 15(7): p. e0235416. DOI: 10.1371/journal.pone.0235416.
Gonçalves, T.B., et al., Effect of subinihibitory and inhibitory concentrations of Plectranthus amboinicus (Lour.) Spreng essential oil on Klebsiella pneumoniae. Phytomedicine, 2012. 19(11): p. 962-8. DOI: 10.1016/j.phymed.
05.013.
Khan S, S.A., Tariq T, Sameen A, Tariq F., Plant physiology, the chemical composition of the oil, and natural variation of the oils (chemotaxonomy and environmental effects, etc.), in Essencial oils un plants, A.M. Nayik GA, Editor. 2023. p. 1-36.
Lukhoba, C.W., Simmonds, M.S., and Paton, A.J., Plectranthus: A review of ethnobotanical uses. J Ethnopharmacol, 2006. 103(1): p. 1-24. DOI: https://doi.org/10.1016/j.jep.2005.09.011.
Cravotto, C., et al., Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets. Foods, 2022. 11(21): p. 3412.
Jozwiak, A., et al., Application of supercritical CO2 for extraction of polyisoprenoid alcohols and their esters from plant tissues. J Lipid Res, 2013. 54(7): p. 2023-8. DOI: 10.1194/jlr.D038794.
Sarker, M.Z., et al., Supercritical carbon dioxide (SC-CO 2) extraction of palm kernel oil from palm kernel. J Food Eng, 2007. 79: p. 1007-1014. DOI: 10.1016/j.jfoodeng.2006.03.021.
Loneman, D.M., et al., A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize. PLoS One, 2017. 12(7): p. e0180850. DOI: 10.1371/journal.pone.
Abubakar, A.R. and Haque, M., Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J Pharm Bioallied Sci, 2020. 12(1): p. 1-10DOI: 10.4103/jpbs.JPBS_175_19.
Altemimi, A., et al., Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants (Basel), 2017. 6(4). DOI: 10.3390/plants6040042.
El-Hawary, S., et al., Phytochemical screening, DNA fingerprinting, nutritional value of Plectranthus ambionicus (Lour.) Spreng. Pharmacogn J, 2012. 4: p. 10-13. DOI: 10.5530/pj.2012.30.2.
Gurib-Fakim, A., et al., Aromatic Plants of Mauritius: Volatile Constituents of the Essential Oils of Coleus aromaticus Benth., Triphasia trifolia (Burm.f.) and Eucalyptus kirtoniana F. Muell. J Essent Oil Res , 1995. 7: p. 215-218.
Asiimwe, S., et al. Chemical composition and Toxicological evaluation of the aqueous leaf extracts of Plectranthus amboinicus Lour : Spreng. 2014.
Baser, K.H., Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des, 2008. 14(29): p. 3106-19. DOI: 10.2174/138161208786404227.
Jaramillo-Colorado, B.E., VEega-Diaz, R., and Pino-Benitez, C.N., Volatile chemical composition of Colombian Plectranthus amboinicus (Lour.) Spreng. essential oil and its biocidal action against Tribolium castaneum (Herbst). Rev Colomb Cienc Hortic, 2022. 16.
de Carvalho, F.O., et al., Anti-inflammatory and antioxidant activity of carvacrol in the respiratory system: A systematic review and meta-analysis. Phytother Res, 2020. 34(9): p. 2214-2229. DOI: 10.1002/ptr.6688.
Trailovic, S.M., et al., Action of Carvacrol on Parascaris sp. and Antagonistic Effect on Nicotinic Acetylcholine Receptors. Pharmaceuticals, 2021. 14(6): p. 505.
Nagoor M., et al., Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharmacol, 2017. 8. DOI: 10.3389/fphar.2017.00380.
Zhou, E., et al., Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia, 2014. 96: p. 131-137. DOI: https://doi.org/10.1016/j.fitote.2014.04.
Gholijani, N., et al., Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages. J Immunotoxicol, 2016. 13(2): p. 157-164. DOI: 10.3109/1547691X.2015.
Hussein, R.M., et al., Thymol protects against bleomycin-induced pulmonary fibrosis via abrogation of oxidative stress, inflammation, and modulation of miR-29a/TGF-β and PI3K/Akt signaling in mice. Life Sci, 2023. 314: p. 121256. DOI: 10.1016/j.lfs.2022.121256.
Peana, A. and Moretti, L., Linalool in Essential Plant Oils: Pharmacological Effects. 2008.
Ramalho, T.R., et al., Gamma-Terpinene Modulates Acute Inflammatory Response in Mice. Planta Med, 2015. 81(14): p. 1248-54. DOI: 10.1055/s-0035-1546169.
Kim, T., et al., Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int J Mol Sci , 2020. 21(6): p. 2187.
Jiang, K., et al., Geraniol alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis. Oncotarget, 2017. 8(41): p. 71038-71053. DOI: 10.18632/
oncotarget.20298.
Huang, X., et al., Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status. Int Immunopharmacol, 2015. 26(1): p. 265-71. DOI: 10.1016/j.intimp.2015.03.026.
Balahbib, A., et al., Health beneficial and pharmacological properties of p-cymene. Food Chem Toxicol, 2021. 153: p. 112259. DOI: https://doi.org/10.1016/j.fct.2021.112259.
Yi, C., et al., Protective Effect of p-Cymene on Lipopolysaccharide-Induced Acute Lung Injury in Mice. Inflammation, 2013. 37: p. 358-364. DOI: 10.1007/s10753-013-9747-3.
Panneerselvam, C., et al., Anticancer activity of bioactive compound chavicol as potential toxic against human lung cancer A549 cells. J Drug Deliv Sci Technol, 2022. 73: p. 103442. DOI: https://doi.org/10.1016/j.jddst.2022.103442.
Kim, W., D. Lim, and J. Kim, p-Coumaric Acid, a Major Active Compound of Bambusae Caulis in Taeniam, Suppresses Cigarette Smoke-Induced Pulmonary Inflammation. Am J Chin Med, 2018. 46(2): p. 407-421. DOI: 10.1142/s0192415
x18500209.
Kheiry, M., et al., p-Coumaric Acid Attenuates Lipopolysaccharide-Induced Lung Inflammation in Rats by Scavenging ROS Production: an In Vivo and In Vitro Study. Inflammation, 2019. 42(6): p. 1939-1950. DOI: 10.1007/s10753-019-01054-6.
da Silva Araújo, N.P., et al., Quercetin Attenuates Acute Lung Injury Caused by Cigarette Smoke Both In Vitro and In Vivo. Copd, 2020. 17(2): p. 205-214. DOI: 10.1080/15412555.2020.
Sul, O.J. and Ra, S.W., Quercetin Prevents LPS-Induced Oxidative Stress and Inflammation by Modulating NOX2/ROS/NF-kB in Lung Epithelial Cells. Molecules, 2021. 26(22). DOI: 10.3390/molecules26226949.
Ganeshpurkar, A. and Saluja, A.K., The Pharmacological Potential of Rutin. Saudi Pharm J, 2017. 25(2): p. 149-164. DOI: 10.1016/j.jsps.2016.04.025.
Bai, J., et al., Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother, 2021. 133: p. 110985. DOI: https://doi.org/10.1016/j.biopha.2020.110985.
Singla, E., et al., Gallic acid ameliorates COPD-associated exacerbation in mice. Mol Cell Biochem, 2021. 476(1): p. 293-302. DOI: 10.1007/s11010-020-03905-5.
Luo, C., et al., A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Front Pharmacol, 2020. 11: p. 153. DOI: 10.3389/fphar.2020.00153.
Sanbongi, C., et al., Rosmarinic acid inhibits lung injury induced by diesel exhaust particles. Free Radic Biol Med, 2003. 34(8): p. 1060-9. DOI: 10.1016/s0891-5849(03)00040-6.
Leu, W.J., Chen, J.C., and Guh, J.H., Extract From Plectranthus amboinicus Inhibit Maturation and Release of Interleukin 1β Through Inhibition of NF-κB Nuclear Translocation and NLRP3 Inflammasome Activation. Front Pharmacol, 2019. 10. DOI: 10.3389/fphar.2019.00573.
Morton, J.F., Country Borage (Coleus amboinicus Lour.). J Herbs Spices Med P, 1992. 1(1-2): p. 77-90. DOI: 10.1300/J044v01n01_09.
Ruiz, A.R., et al., Screening of medicinal plants for induction of somatic segregation activity in Aspergillus nidulans. J Ethnopharmacol, 1996. 52(3): p. 123-127. DOI: https://doi.org/
1016/0378-8741(96)01394-3.
Carbajal, D., et al., Pharmacological screening of plant decoctions commonly used in Cuban folk medicine. J Ethnopharmacol, 1991. 33(1): p. 21-24. DOI: https://doi.org/10.1016/0378-8741
(91)90155-7.
Menéndez Castillo, R.A. and Pavón González, V., Plecthranthus amboinicus (Lour.) Spreng. Rev Cuba Plantas Med, 1999. 4: p. 110-115.
Cano, J.H. and Volpato, G., Herbal mixtures in the traditional medicine of eastern Cuba. J Ethnopharmacol, 2004. 90(2-3): p. 293-316. DOI: 10.1016/j.jep.2003.10.012.
Singh, G., et al., Studies on essential oils, Part 33: chemical and insecticidal investigations on leaf oil of Coleus amboinicus Lour. Flavour Fragr J, 2002. 17(6): p. 440-442. DOI: https://doi.org/
1002/ffj.1123.
Rodríguez-Cámbara, Y., et al., Efficacy of Plectranthus amboinicus (Lour.) Spreng (French oregano) tablets in patients with common cold: a randomized, double-blind, placebo-controlled study. Bionatura, 2016. 1. DOI: 10.21931/RB/
01.04.4.