Molecular Mechanisms of Skin Photoaging and the Therapeutic Applications of Plant-Derived Bioactive Compounds
Main Article Content
Abstract
Chronic exposure to ultraviolet (UV) radiation accelerates skin aging, leading to structural and functional deterioration characterized by dryness, irregular pigmentation, lentigines, hyperpigmentation, wrinkles, and reduced elasticity. Increasing attention has been given to plant-derived natural compounds for their potential therapeutic applications in mitigating UV-induced skin photoaging. This review critically examines the cellular and molecular mechanisms underlying photoaging and explores the therapeutic potential of plant-based natural ingredients. UV radiation induces photoaging through direct damage to cellular macromolecules and indirect oxidative stress mediated by reactive oxygen species (ROS). ROS-driven signaling cascades contribute to key pathological processes, including inflammation, extracellular matrix degradation, apoptosis, mitochondrial dysfunction, and immune suppression. Additionally, recent evidence suggests that UV exposure affects adipose tissue homeostasis and modulates transient receptor potential cation channel V, further exacerbating photoaging. Over the past few decades, mechanistic studies have identified multiple therapeutic targets, paving the way for novel interventions. This review highlights promising plant-derived bioactive compounds that counteract UV-induced skin damage through antioxidant, anti-inflammatory, and photoprotective mechanisms. By elucidating the molecular pathways involved in photoaging and evaluating the efficacy of natural product-based interventions, this work provides insights into potential strategies for preventing and managing UV-induced skin deterioration.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Journal of TCI is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence, unless otherwise stated. Please read our Policies page for more information.
References
Salminen A, Kaarniranta K, Kauppinen A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res. 2022;71(7-8):817-31. https://doi.org/10.1007/s00011-022-01598-8
Tanveer MA, Rashid H, Tasduq SA. Molecular basis of skin photoaging and therapeutic interventions by plant-derived natural product ingredients: A comprehensive review. Heliyon. 2023;9(3):e13580. https://doi.org/10.1016/j.heliyon.2023.e13580
Yu ZW, Zheng M, Fan HY, Liang XH, Tang YL. Ultraviolet (UV) radiation: a double-edged sword in cancer development and therapy. Mol Biomed. 2024;5(1):49. https://doi.org/10.1186/s43556-024-00209-8
Verma A, Zanoletti A, Kareem KY, Adelodun B, Kumar P, Ajibade FO, et al. Skin protection from solar ultraviolet radiation using natural compounds: a review. Environ Chem Lett. 2023;22(1):273-95. https://doi.org/10.1007/s10311-023-01649-4
Zorina A, Zorin V, Kudlay D, Kopnin P. Molecular Mechanisms of Changes in Homeostasis of the Dermal Extracellular Matrix: Both Involutional and Mediated by Ultraviolet Radiation. Int J Mol Sci. 2022;23(12). https://doi.org/10.3390/ijms23126655
Jin SG, Padron F, Pfeifer GP. UVA Radiation, DNA Damage, and Melanoma. ACS Omega. 2022;7(37):32936-48. https://doi.org/10.1021/acsomega.2c04424
Feng C, Chen X, Yin X, Jiang Y, Zhao C. Matrix Metalloproteinases on Skin Photoaging. J Cosmet Dermatol. 2024;23(12):3847-62. https://doi.org/10.1111/jocd.16558
Schneider G, Figueroa FL, Vega J, Chaves P, Álvarez-Gómez F, Korbee N, et al. Photoprotection properties of marine photosynthetic organisms grown in high ultraviolet exposure areas: Cosmeceutical applications. Algal Research. 2020;49. https://doi.org/10.1016/j.algal.2020.101956
Parisi M, Verrillo M, Luciano MA, Caiazzo G, Quaranta M, Scognamiglio F, et al. Use of Natural Agents and Agrifood Wastes for the Treatment of Skin Photoaging. Plants (Basel). 2023;12(4). https://doi.org/10.3390/plants12040840
Torres-Contreras AM, Garcia-Baeza A, Vidal-Limon HR, Balderas-Renteria I, Ramirez-Cabrera MA, Ramirez-Estrada K. Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. Plants (Basel). 2022;11(2). https://doi.org/10.3390/plants11020220
Resende D, Jesus A, Sousa Lobo JM, Sousa E, Cruz MT, Cidade H, et al. Up-to-Date Overview of the Use of Natural Ingredients in Sunscreens. Pharmaceuticals (Basel). 2022;15(3). https://doi.org/10.3390/ph15030372
Gromkowska-Kepka KJ, Puscion-Jakubik A, Markiewicz-Zukowska R, Socha K. The impact of ultraviolet radiation on skin photoaging - review of in vitro studies. J Cosmet Dermatol. 2021;20(11):3427-31. https://doi.org/10.1111/jocd.14033
Lee L-Y, Liu S-X. Pathogenesis of Photoaging in Human Dermal Fibroblasts. Int J Dermatol Venereol. 2020;3(1):37-42. https://doi.org/10.1097/JD9.0000000000000068
Machalinski B, Oszutowska-Mazurek D, Mazurek P, Parafiniuk M, Szumilas P, Zawislak A, et al. Assessment of Extracellular Matrix Fibrous Elements in Male Dermal Aging: A Ten-Year Follow-Up Preliminary Case Study. Biology (Basel). 2024;13(8). https://doi.org/10.3390/biology13080636
Solano F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules. 2020;25(7). https://doi.org/10.3390/molecules25071537
Vechtomova YL, Telegina TA, Buglak AA, Kritsky MS. UV Radiation in DNA Damage and Repair Involving DNA-Photolyases and Cryptochromes. Biomedicines. 2021;9(11). https://doi.org/10.3390/biomedicines9111564
Fraikin GY. Role of Various UV-Induced DNA Lesions in Human Skin Carcinogenesis. J Biomed Res Environ Sci. 2024;5(5):466-73. https://doi.org/10.37871/jbres1916
Allegra A, Pioggia G, Tonacci A, Musolino C, Gangemi S. Oxidative Stress and Photodynamic Therapy of Skin Cancers: Mechanisms, Challenges and Promising Developments. Antioxidants (Basel). 2020;9(5). https://doi.org/10.3390/antiox9050448
Pourzand C, Albieri-Borges A, Raczek NN. Shedding a New Light on Skin Aging, Iron- and Redox-Homeostasis and Emerging Natural Antioxidants. Antioxidants (Basel). 2022;11(3). https://doi.org/10.3390/antiox11030471
He H, Xiong L, Jian L, Li L, Wu Y, Qiao S. Role of mitochondria on UV-induced skin damage and molecular mechanisms of active chemical compounds targeting mitochondria. J Photochem Photobiol B. 2022;232:112464. https://doi.org/10.1016/j.jphotobiol.2022.112464
Prasanth MI, Gayathri S, Bhaskar JP, Krishnan V, Balamurugan K. Understanding the role of p38 and JNK mediated MAPK pathway in response to UV-A induced photoaging in Caenorhabditis elegans. J Photochem Photobiol B. 2020;205:111844. https://doi.org/10.1016/j.jphotobiol.2020.111844
Bachelor MA, Bowden GT. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol. 2004;14(2):131-8. https://doi.org/10.1016/j.semcancer.2003.09.017
Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int J Cosmet Sci. 2005;27(1):17-34. https://doi.org/10.1111/j.1467-2494.2004.00241.x
Van Laethem A, Nys K, Van Kelst S, Claerhout S, Ichijo H, Vandenheede JR, et al. Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes. Free Radic Biol Med. 2006;41(9):1361-71. https://doi.org/10.1016/j.freeradbiomed.2006.07.007
Bocheva GS, Slominski RM, Slominski AT. Immunological Aspects of Skin Aging in Atopic Dermatitis. Int J Mol Sci. 2021;22(11). https://doi.org/10.3390/ijms22115729.
Agrawal R, Hu A, Bollag WB. The Skin and Inflamm-Aging. Biology (Basel). 2023;12(11). https://doi.org/10.3390/biology12111396.
Xie M, Jiang Z, Lin X, Wei X. Application of plant extracts cosmetics in the field of anti-aging. JDSCT. 2024;1(2). https://doi.org/10.1016/j.jdsct.2024.100014
Michalak M. Plant-Derived Antioxidants: Significance in Skin Health and the Aging Process. Int J Mol Sci. 2022;23(2). https://doi.org/10.3390/ijms23020585.
Liu JK. Natural products in cosmetics. Nat Prod Bioprospect. 2022;12(1):40. https://doi.org/10.1007/s13659-022-00363-y
Chan LKW, Lee KWA, Lee CH, Lam KWP, Lee KFV, Wu R, et al. Cosmeceuticals in photoaging: A review. Skin Res Technol. 2024;30(9):e13730. https://doi.org/10.1111/srt.13730
Costa EF, Magalhaes WV, Di Stasi LC. Recent Advances in Herbal-Derived Products with Skin Anti-Aging Properties and Cosmetic Applications. Molecules. 2022;27(21). https://doi.org/10.3390/molecules27217518
Zhang Y, Cai P, Cheng G, Zhang Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat Prod Commun. 2022;17(1). https://doi.org/10.1177/1934578X211069
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules. 2023;28(4). https://doi.org/10.3390/molecules28041845
Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules. 2022;27(9). https://doi.org/10.3390/molecules27092901
Nisa RU, Nisa AU, Tantray AY, Shah AH, Jan AT, Shah AA, et al. Plant phenolics with promising therapeutic applications against skin disorders: A mechanistic review. J Agric Food Res. 2024;16. https://doi.org/10.1016/j.jafr.2024.101090
Hecker A, Schellnegger M, Hofmann E, Luze H, Nischwitz SP, Kamolz LP, et al. The impact of resveratrol on skin wound healing, scarring, and aging. Int Wound J. 2022;19(1):9-28. https://doi.org/10.1111/iwj.13601
Wada-Hiraike O. Benefits of the Phytoestrogen Resveratrol for Perimenopausal Women. Endocrines. 2021;2(4):457-71. https://doi.org/10.3390/endocrines2040041
Podgrajsek R, Ban Frangez H, Stimpfel M. Molecular Mechanism of Resveratrol and Its Therapeutic Potential on Female Infertility. Int J Mol Sci. 2024;25(7). https://doi.org/10.3390/ijms25073613
Vesely O, Baldovska S, Kolesarova A. Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients. 2021;13(9). https://doi.org/10.3390/nu13093095
Hur GH, Ryu AR, Kim YW, Lee MY. The Potential Anti-Photoaging Effect of Photodynamic Therapy Using Chlorin e6-Curcumin Conjugate in UVB-Irradiated Fibroblasts and Hairless Mice. Pharmaceutics. 2022;14(5). https://doi.org/10.3390/pharmaceutics14050968
Mao X, Zhang X, Zheng X, Chen Y, Xuan Z, Huang P. Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and by repressing TFAP2A-mediated ECM pathway. J Nat Med. 2021;75(3):590-601. https://doi.org/10.1007/s11418-021-01505-1
Bjorklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, et al. Natural Compounds and Products from an Anti-Aging Perspective. Molecules. 2022;27(20). https://doi.org/10.3390/molecules27207084
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun. 2020;15(3). https://doi.org/10.1177/1934578X20903
Zerres S, Stahl W. Carotenoids in human skin. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(11):158588. https://doi.org/10.1016/j.bbalip.2019.158588
Balic A, Mokos M. Do We Utilize Our Knowledge of the Skin Protective Effects of Carotenoids Enough? Antioxidants (Basel). 2019;8(8). https://doi.org/10.3390/antiox8080259
Stahl W, Sies H. beta-Carotene and other carotenoids in protection from sunlight. Am J Clin Nutr. 2012;96(5):1179S-84S. https://doi.org/10.3945/ajcn.112.034819
Osz BE, Jitca G, Stefanescu RE, Puscas A, Tero-Vescan A, Vari CE. Caffeine and Its Antioxidant Properties-It Is All about Dose and Source. Int J Mol Sci. 2022;23(21). https://doi.org/10.3390/ijms232113074
Conney AH, Lu YP, Lou YR, Kawasumi M, Nghiem P. Mechanisms of Caffeine-Induced Inhibition of UVB Carcinogenesis. Front Oncol. 2013;3:144. https://doi.org/10.3389/fonc.2013.00144
Ferrucci LM, Cartmel B, Molinaro AM, Leffell DJ, Bale AE, Mayne ST. Tea, coffee, and caffeine and early-onset basal cell carcinoma in a case‒control study. Eur J Cancer Prev. 2014;23(4):296-302. https://doi.org/10.1097/CEJ.0000000000000037
Pauwels EKJ, Volterrani D. Coffee Consumption and Cancer Risk: An Assessment of the Health Implications Based on Recent Knowledge. Med Princ Pract. 2021;30(5):401-11. https://doi.org/10.1159/000516067
Elias ML, Israeli AF, Madan R. Caffeine in Skincare: Its Role in Skin Cancer, Sun Protection, and Cosmetics. Indian J Dermatol. 2023;68(5):546-50. https://doi.org/10.4103/ijd.ijd_166_22
Choi W, Cho JH, Park SH, Kim DS, Lee HP, Kim D, et al. Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species. J Ginseng Res. 2024;48(2):211-9. https://doi.org/10.1016/j.jgr.2024.01.001
Jiang R, Xu X, Sun Z, Wang F, Ma R, Feng K, et al. Protective Effects of Ginseng Proteins on Photoaging of Mouse Fibroblasts Induced by UVA. Photochem Photobiol. 2020;96(1):113-23. https://doi.org/10.1111/php.13156
Mishra N, Tripathi R, Pandey D, Shah K, Chauhan NS. Wheatgrass (Triticum aestivum): a miraculous microgreen: an overview. J Future Foods. 2025;5(3):239-47. https://doi.org/10.1016/j.jfutfo.2024.07.003
Boisnic S, Keophiphath M, Serandour AL, Branchet MC, Stéphanie Le Breton SL, Lamour I, et al. Polar lipids from wheat extract oil improve skin damages induced by aging: Evidence from a randomized, placebo-controlled clinical trial in women and an ex vivo study on human skin explant. J Cosmet Dermatol. 2019;18(1). https://doi.org/10.1111/jocd.12967
Son DJ, Jung JC, Choi YM, Ryu HY, Lee S, Davis BA. Wheat Extract Oil (WEO) Attenuates UVB-Induced Photoaging via Collagen Synthesis in Human Keratinocytes and Hairless Mice. Nutrients. 2020;12(2). https://doi.org/10.3390/nu12020300
Lee JH, Ki HH, Kim DK, Lee YM. Triticum aestivum sprout extract attenuates 2,4‑dinitrochlorobenzene‑induced atopic dermatitis‑like skin lesions in mice and the expression of chemokines in human keratinocytes. Mol Med Rep. 2018;18(3):3461-8. https://doi.org/10.3892/mmr.2018.9339
Kumar S, Singh B, Bajpai V. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. J Ethnopharmacol. 2021;275:114054. https://doi.org/10.1016/j.jep.2021.114054
You J, Roh KB, Li Z, Liu G, Tang J, Shin S, et al. The Antiaging Properties of Andrographis paniculata by Activation Epidermal Cell Stemness. Molecules. 2015;20(9):17557-69. https://doi.org/10.3390/molecules200917557
Fardiyah Q, Ersam T, Suyanta, Slamet A, Suprapto, Kurniawan F. New potential and characterization of Andrographis paniculata L. Ness plant extracts as photoprotective agent. Arab J Chem. 2020;13(12):8888-97. https://doi.org/10.1016/j.arabjc.2020.10.015
Hwang E, Ngo HTT, Seo SA, Park B, Zhang M, Yi TH. Protective effect of dietary Alchemilla mollis on UVB-irradiated premature skin aging through regulation of transcription factor NFATc1 and Nrf2/ARE pathways. Phytomedicine. 2018;39:125-36. https://doi.org/10.1016/j.phymed.2017.12.025
Kim HK. Protective Effect of Garlic on Cellular Senescence in UVB-Exposed HaCaT Human Keratinocytes. Nutrients. 2016;8(8). https://doi.org/10.3390/nu8080464
Ngo HT, Hwang E, Seo SA, Park B, Sun ZW, Zhang M, et al. Topical application of neem leaves prevents wrinkles formation in UVB-exposed hairless mice. J Photochem Photobiol B. 2017;169:161-70. https://doi.org/10.1016/j.jphotobiol.2017.03.010
Zhao P, Alam MB, Lee SH. Protection of UVB-Induced Photoaging by Fuzhuan-Brick Tea Aqueous Extract via MAPKs/Nrf2-Mediated Down-Regulation of MMP-1. Nutrients. 2018;11(1). https://doi.org/10.3390/nu11010060
Jeon H, Kim DH, Nho YH, Park JE, Kim SN, Choi EH. A Mixture of Extracts of Kochia scoparia and Rosa multiflora with PPAR alpha/gamma Dual Agonistic Effects Prevents Photoaging in Hairless Mice. Int J Mol Sci. 2016;17(11). https://doi.org/10.3390/ijms17111919
Kim JE, Jang SG, Lee CH, Lee JY, Park H, Kim JH, et al. Beneficial effects on skin health using polysaccharides from red ginseng by-product. J Food Biochem. 2019;43(8):e12961. https://doi.org/10.1111/jfbc.12961
Kwon KR, Alam MB, Park JH, Kim TH, Lee SH. Attenuation of UVB-Induced Photo-Aging by Polyphenolic-Rich Spatholobus Suberectus Stem Extract Via Modulation of MAPK/AP-1/MMPs Signaling in Human Keratinocytes. Nutrients. 2019;11(6). https://doi.org/10.3390/nu11061341
Navabhatra A, Maniratanachote R, Yingngam B. Antiphotoaging properties of Zingiber montanum essential oil isolated by solvent-free microwave extraction against ultraviolet B-irradiated human dermal fibroblasts. Toxicol Res. 2022;38(2):235-48. https://doi.org/10.1007/s43188-021-00107-z
Poon F, Kang S, Chien AL. Mechanisms and treatments of photoaging. Photodermatol Photoimmunol Photomed. 2015;31(2):65-74. https://doi.org/10.1111/phpp.12145
Auh JH, Madhavan J. Protective effect of a mixture of marigold and rosemary extracts on UV-induced photoaging in mice. Biomed Pharmacother. 2021;135:111178. https://doi.org/10.1016/j.biopha.2020.111178
Petruk G, Del Giudice R, Rigano MM, Monti DM. Antioxidants from Plants Protect against Skin Photoaging. Oxid Med Cell Longev. 2018;2018:1454936. https://doi.org/10.1155/2018/1454936
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020;164(1):1-22. https://doi.org/0.5507/bp.2020.010
Gao L, Liu X, Luo X, Lou X, Li P, Li X, et al. Antiaging effects of dietary supplements and natural products. Front Pharmacol. 2023;14:1192714. https://doi.org/10.3389/fphar.2023.1192714.
Zhou F, Huang X, Pan Y, Cao D, Liu C, Liu Y, et al. Resveratrol protects HaCaT cells from ultraviolet B-induced photoaging via upregulation of HSP27 and modulation of mitochondrial caspase-dependent apoptotic pathway. Biochem Biophys Res Commun. 2018;499(3):662-8. https://doi.org/10.1016/j.bbrc.2018.03.207
Farhan M. The Promising Role of Polyphenols in Skin Disorders. Molecules. 2024;29(4). https://doi.org/10.3390/molecules29040865
Tang SC, Hsiao YP, Ko JL. Genistein protects against ultraviolet B-induced wrinkling and photoinflammation in in vitro and in vivo models. Genes Nutr. 2022;17(1):4. https://doi.org/10.1186/s12263-022-00706-x
Gendrisch F, Esser PR, Schempp CM, Wolfle U. Luteolin as a modulator of skin aging and inflammation. Biofactors. 2021;47(2):170-80. https://doi.org/10.1002/biof.1699
Zhu L, Lu Y, Yu WG, Zhao X, Lu YH. Anti-photoageing and anti-melanogenesis activities of chrysin. Pharm Biol. 2016;54(11):2692-700. https://doi.org/10.1080/13880209.2016.1179334
Österlund C, Hrapovic N, Lafon-Kolb V, Amini N, Smiljanic S, Visdal-Johnsen L. Protective Effects of Naringenin against UVB Irradiation and Air Pollution-Induced Skin Aging and Pigmentation. Cosmetics. 2023;10(3). https://doi.org/10.3390/cosmetics10030088
Shin EJ, Lee JS, Hong S, Lim TG, Byun S. Quercetin Directly Targets JAK2 and PKCdelta and Prevents UV-Induced Photoaging in Human Skin. Int J Mol Sci. 2019;20(21). https://doi.org/10.3390/ijms20215262
Xue N, Liu Y, Jin J, Ji M, Chen X. Chlorogenic Acid Prevents UVA-Induced Skin Photoaging through Regulating Collagen Metabolism and Apoptosis in Human Dermal Fibroblasts. Int J Mol Sci. 2022;23(13). https://doi.org/10.3390/ijms23136941
Dewi NKDP, Suryadewi KD, Fitriari DM, Andini KL, Laksmiani NPL. Molecular docking of gallic acid as anti-photoaging in silico. Pharmacy Reports. 2021;1(2). https://doi.org/10.51511/pr.18
Hu G, Zhou X. Gallic Acid Ameliorates Atopic Dermatitis-Like Skin Inflammation Through Immune Regulation in a Mouse Model. Clin Cosmet Investig Dermatol. 2021;14:1675-83. https://doi.org/10.2147/CCID.S327825
Cui B, Wang Y, Jin J, Yang Z, Guo R, Li X, et al. Resveratrol Treats UVB-Induced Photoaging by Anti-MMP Expression, through Anti-Inflammatory, Antioxidant, and Antiapoptotic Properties, and Treats Photoaging by Upregulating VEGF-B Expression. Oxid Med Cell Longev. 2022;2022:6037303. https://doi.org/10.1155/2022/6037303
Sun J, Jiang Y, Fu J, He L, Guo X, Ye H, et al. Beneficial Effects of Epigallocatechin Gallate in Preventing Skin Photoaging: A Review. Molecules. 2024;29(22). https://doi.org/10.3390/molecules29225226
Wojciak M, Drozdowski P, Skalska-Kaminska A, Zagorska-Dziok M, Ziemlewska A, Niziol-Lukaszewska Z, et al. Protective, Anti-Inflammatory, and Anti-Aging Effects of Soy Isoflavones on Skin Cells: An Overview of In Vitro and In Vivo Studies. Molecules. 2024;29(23). https://doi.org/10.3390/molecules29235790
Mu J, Ma H, Chen H, Zhang X, Ye M. Luteolin Prevents UVB-Induced Skin Photoaging Damage by Modulating SIRT3/ROS/MAPK Signaling: An in vitro and in vivo Studies. Front Pharmacol. 2021;12:728261. https://doi.org/10.3389/fphar.2021.728261
Gupta A, Jain P, Nagori K, Adnan M, Ajazuddin. Treatment strategies for psoriasis using flavonoids from traditional Chinese medicine. Pharmacol Res - Modern Chin Med. 2024;12. https://doi.org/10.1016/j.prmcm.2024.100463
Lee HY, Kim EJ, Cho DY, Jung JG, Kim MJ, Lee JH, et al. Photoprotective Effect of Fermented and Aged Mountain-Cultivated Ginseng Sprout (Panax ginseng) on Ultraviolet Radiation-Induced Skin Aging in a Hairless Mouse Model. Nutrients. 2023;15(7). https://doi.org/10.3390/nu15071715
Proietti I, Guida S, Dybala A, Spagnoli A, Potenza C. Effects of CE Ferulic® Combined with Microneedling in the Treatment of Pigmentary Disorders: A Monocentric, Split Face, Comparative Study. Cosmetics. 2024;11(3). https://doi.org/10.3390/cosmetics11030101
Manap ASA, Lum YK, Ong LH, Tang Y-Q, Gew LT, Chia AYY. Perspective approaches on melanogenesis inhibition. Dermatol Sin. 2021;39(1):1-12. https://doi.org/10.4103/ds.ds_46_20
Boo YC. Human Skin Lightening Efficacy of Resveratrol and Its Analogs: From in Vitro Studies to Cosmetic Applications. Antioxidants (Basel). 2019;8(9). https://doi.org/10.3390/antiox8090332
Wang W, Di T, Wang W, Jiang H. EGCG, GCG, TFDG, or TSA Inhibiting Melanin Synthesis by Downregulating MC1R Expression. Int J Mol Sci. 2023;24(13). https://doi.org/10.3390/ijms241311017
Ningsih IY, Wardhani LK, Eka Nuryuanda AR, Puspitasari E, Hidayat MA. Genistein Content and Tyrosinase Inhibitory Activity of Edamame (Glycine max) Extracts. J Trop Pharm Chem. 2022;6(2):2407-6090. https://doi.org/10.30872/j.trop.pharm.chem.v6i2.243
Lee Y, Song HY, Byun EB. Anti-melanogenic effects of hydroxyethyl chrysin through the inhibition of tyrosinase activity: In vitro and in silico approaches. Heliyon. 2025;11(2):e41718. https://doi.org/10.1016/j.heliyon.2025.e41718
Liu-Smith F, Meyskens FL. Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Mol Nutr Food Res. 2016;60(6):1264-74. https://doi.org/10.1002/mnfr.201500822
Chaikul P, Khat-Udomkiri N, Iangthanarat K, Manosroi J, Manosroi A. Characteristics and in vitro anti-skin aging activity of gallic acid loaded in cationic CTAB niosome. Eur J Pharm Sci. 2019;131:39-49. https://doi.org/10.1016/j.ejps.2019.02.008
Liu J, Xu X, Zhou J, Sun G, Li Z, Zhai L, et al. Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways. J Ginseng Res. 2023;47(6):714-25. https://doi.org/10.1016/j.jgr.2023.05.002