Volatile Oil Extraction Using Supercritical Fluid: A Mini Review
Main Article Content
Abstract
Volatile oils are complex mixtures of low-molecular-weight compounds responsible for the distinctive aroma of each plant species. In addition to their aroma properties, these oils exhibit a wide range of pharmacological activities, including antimicrobial, anti-inflammatory, and antioxidant effects. Supercritical fluid extraction has emerged as a highly efficient and environmentally friendly technique for obtaining volatile oils, offering multiple advantages over conventional extraction methods. This approach minimizes thermal degradation of heat-sensitive compounds, reduces the need for toxic organic solvents, and allows selective extraction of target constituents by fine-tuning operational parameters. This article reviews the fundamental principles of supercritical fluid extraction for volatile oil recovery, common supercritical solvents, and the critical factors influencing extraction efficiency, such as pressure, temperature, modifier type and concentration, extraction time, flow rate, particle size, and moisture content. Understanding and optimizing these variables is essential to maximize yield and to obtain volatile oils with desired chemical profiles.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Journal of TCI is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence, unless otherwise stated. Please read our Policies page for more information.
References
Mohammed HA, Sulaiman GM, Al-Saffar AZ, Mohsin MH, Khan RA, Hadi NA, et al. Aromatic volatile compounds of essential oils: Distribution, chemical perspective, biological activity, and clinical applications. Food Sci Nutr. 2025;13(9):e70825. https://doi.org/10.1002/fsn3.70825.
Bakó E, Böszörményi A, Vargáné Szabó B, Engh MA, Hegyi P, Ványolós A, et al. Chemometric analysis of monoterpenes and sesquiterpenes of conifers. Front Plant Sci. 2024;15:1392539. https://doi.org/10.3389/fpls.2024.1392539.
Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W. Essential oils' chemical characterization and investigation of some biological activities: A critical review. Medicines. 2016;3(4). https://doi.org/10.3390/medicines3040025.
Mohammed HA, Sulaiman GM, Khan RA, Amin MA, Albukhaty S, Elshibani FA, et al. Factors affecting the accumulation and variation of volatile and non-volatile constituents in rosemary, Rosmarinus officinalis L. J Appl Res Med Aromat Plants. 2024;42:100571. https://doi.org/10.1016/j.jarmap.2024.100571.
Ak A, Soyocak A. Chapter 3 - The therapeutic potential of essential oils: Investigating their biological activities and role in disease management. In: Atta ur R, editor. Studies in Natural Products Chemistry. 86: Elsevier; 2025. p. 95-140.
Sharmeen JB, Mahomoodally FM, Zengin G, Maggi F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules. 2021;26(3):666. https://doi.org/10.3390/molecules26030666.
Rani N, Kumar V, Chauhan A. Exploring essential oils: Extraction, biological roles, and food applications. J Food Qual. 2025;2025(1):9985753. https://doi.org/10.1155/jfq/9985753.
Ivanova S, Gvozdeva Y, Staynova R, Grekova-Kafalova D, Nalbantova V, Benbassat N, et al. Essential oils – a review of the natural evolution of applications and some future perspectives. Pharmacia. 2025;72:1-12. https://doi.org/10.3897/pharmacia.72.e140059.
Vidic D, Čopra-Janićijević A, Miloš M, Maksimović M. Effects of different methods of isolation on volatile composition of Artemisia annua L. Int J Anal Chem. 2018;2018(1):9604183. https://doi.org/10.1155/2018/9604183.
Machado CA, Oliveira FO, de Andrade MA, Hodel KVS, Lepikson H, Machado BAS. Steam distillation for essential oil extraction: An evaluation of technological advances based on an analysis of patent documents. Sustainability. 2022;14(12):7119. https://doi.org/10.3390/su14127119.
Mungwari CP, King'ondu CK, Sigauke P, Obadele BA. Conventional and modern techniques for bioactive compounds recovery from plants: Review. Sci Afr. 2025;27:e02509. https://doi.org/10.1016/j.sciaf.2024.e02509.
Kapadia P, Newell AS, Cunningham J, Roberts MR, Hardy JG. Extraction of high-value chemicals from plants for technical and medical applications. Int J Mol Sci. 2022;23(18):10334. https://doi.org/10.3390/ijms231810334.
Bakhshabadi H, Ganje M, Gharekhani M, Mohammadi-Moghaddam T, Aulestia C, Morshedi A. A review of new methods for extracting oil from plants to enhance the efficiency and physicochemical properties of the extracted oils. Processes. 2025;13(4):1124. https://doi.org/10.3390/pr13041124.
Norazlina MR, Tan YS, Hasmadi M, Jahurul MHA. Effect of solvent pre-treatment on the physicochemical, thermal profiles and morphological behavior of Mangifera pajang seed fat. Heliyon. 2021;7(9):e08073. https://doi.org/10.1016/j.heliyon.2021.e08073.
Martins R, Barbosa A, Advinha B, Sales H, Pontes R, Nunes J. Green extraction techniques of bioactive compounds: A state-of-the-art review. Processes. 2023;11(8):2255. https://doi.org/10.3390/pr11082255.
Cao S, Liang J, Chen M, Xu C, Wang X, Qiu L, et al. Comparative analysis of extraction technologies for plant extracts and absolutes. Front Chem. 2025;13:1536590. https://doi.org/10.3389/fchem.2025.1536590.
Pandit B, Saha P. Eco-friendly alternatives to conventional solvents: Innovations and applications in pharmaceutical manufacturing. Sust Chem Clim Act. 2025;7:100140. https://doi.org/10.1016/j.scca.2025.100140.
Shiju SG, Augustyniak A, Alaydi H, Rajauria G, Gaffey J, McMahon H. Green liquid–liquid extraction for environmental chemicals. In: Hussain CM, editor. Green environmental chemical analysis: Application of sustainable materials and methods for the analysis of environmental pollutants. 88: Royal Society of Chemistry; 2025. p. 141-92.
Bitwell C, Indra SS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci Afr. 2023;19:e01585. https://doi.org/10.1016/j.sciaf.2023.e01585.
Uwineza PA, Waśkiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules. 2020;25(17):3847. https://doi.org/10.3390/molecules25173847.
Ngamkhae N, Monthakantirat O, Chulikhit Y, Maneenet J, Khamphukdee C, Chotritthirong Y, et al. Approach of supercritical carbon dioxide for the extraction of Kleeb Bua Daeng formula. Molecules. 2023;28(19):6873. https://doi.org/10.3390/molecules28196873.
Nozari B, Kander R. Supercritical CO2 technology for biomass extraction: Review. Ind Crops Prod. 2025;233:121348. https://doi.org/10.1016/j.indcrop.2025.121348.
El Rayess Y, Dawra M, El Beyrouthy M. Chapter 17 - Modern extraction techniques for herbal bioactives. In: Bakshi IS, Bala R, Madaan R, Sindhu RK, editors. Herbal Bioactive-Based Drug Delivery Systems: Academic Press; 2022. p. 437-55.
El Ahmadi K, El Allaoui H, El Abdouni A, Bouhrim M, Eto B, Dira I, et al. A bibliometric analysis of the supercritical CO2 extraction of essential oils from aromatic and medicinal plants: Trends and perspectives. Horticulturae. 2024;10(11):1185. https://doi.org/10.3390/horticulturae10111185.
Kamaruddin MSH, Chong GH, Hassan MHA, Suleiman N. Thermodynamic and kinetic modelling of 6-gingerol scCO2 extraction. Food Bioprod Process. 2025;150:401-15. https://doi.org/10.1016/j.fbp.2025.01.013.
Mai T-C, Tran N-T, Mai D-T, Ngoc Mai TT, Thuc Duyen NH, Minh An TN, et al. Supercritical CO2 assisted extraction of essential oil and naringin from Citrus grandis peel: in vitro antimicrobial activity and docking study. RSC Adv. 2022;12(40):25962-76. https://doi.org/10.1039/D2RA04068A.
Coelho JP, Cristino AF, Matos PG, Rauter AP, Nobre BP, Mendes RL, et al. Extraction of volatile oil from aromatic plants with supercritical carbon dioxide: experiments and modeling. Molecules. 2012;17(9):10550-73. https://doi.org/10.3390/molecules170910550.
Ciarlini JJS, Marangoni A, Bolzan A. Selectivity of supercritical CO2 extraction and atmospheric pressure techniques for the major volatile compounds of Eugenia involucrata leaves from Southern Brazil. Food Bioprod Process. 2017;106:29-34. https://doi.org/10.1016/j.fbp.2017.08.008.
Coelho JAP, Pereira AP, Mendes RL, Palavra AMF. Supercritical carbon dioxide extraction of Foeniculum vulgare volatile oil. Flavour Fragr J. 2003;18(4):316-9. https://doi.org/10.1002/ffj.1223.
Coelho J, Veiga J, Karmali A, Nicolai M, Pinto Reis C, Nobre B, et al. Supercritical CO2 extracts and volatile oil of basil (Ocimum basilicum L.) comparison with conventional methods. Separations. 2018;5(2):21. https://doi.org/10.3390/separations5020021.
Wei M-C, Wang C-S, Wei D-H, Yang Y-C. Insights into the supercritical CO2 extraction of perilla oil and its theoretical solubility. Processes. 2021;9(2):239. https://doi.org/10.3390/pr9020239.
Le TH. Green extraction of plant antioxidants: Supercritical methods and industrial applications – A review. Food Humanity. 2025;5:100787. https://doi.org/10.1016/j.foohum.2025.100787.
Gaikwad RK, Mondal IH, Dash KK, shaikh AM, Béla K. Effectiveness of sustainable oil extraction techniques: A comprehensive review. J Agric Food Res. 2025;19:101546. https://doi.org/10.1016/j.jafr.2024.101546.
King JW, France JE. Basic principles of analytical supercritical fluid extraction. In: Wenclawiak B, editor. Analysis with supercritical fluids: Extraction and chromatography. Berlin: Springer-Verlag Berlin Heidelberg; 1992. p. 214.
Monton C, Chankana N, Leelawat S, Suksaeree J, Songsak T. Optimization of supercritical carbon dioxide fluid extraction of seized cannabis and self-emulsifying drug delivery system for enhancing the dissolution of cannabis extract. J Supercrit Fluids. 2022;179:105423. https://doi.org/10.1016/j.supflu.2021.105423.
Kumoro AC, Hasan M. Supercritical carbon dioxide extraction of andrographolide from Andrographis paniculata: Effect of the solvent flow rate, pressure, and temperature. Chin J Chem Eng. 2007;15(6):877-83. https://doi.org/10.1016/S1004-9541(08)60018-X.
Kamali H, Aminimoghadamfarouj N, Golmakani E, Nematollahi A. The optimization of essential oils supercritical CO2 extraction from Lavandula hybrida through static-dynamic steps procedure and semi-continuous technique using response surface method. Pharmacogn Res. 2015;7(1):57-65. https://doi.org/10.4103/0974-8490.147209.
Ara KM, Jowkarderis M, Raofie F. Optimization of supercritical fluid extraction of essential oils and fatty acids from flixweed (Descurainia sophia L.) seed using response surface methodology and central composite design. J Food Sci Technol. 2015;52(7):4450-8. https://doi.org/10.1007/s13197-014-1353-3.
Ortiz-Sanchez M, Agudelo-Patiño T, Cardona Alzate CA. Maximizing the hesperidin extraction using supercritical carbon dioxide and ethanol: Theoretical prediction and experimental results. Processes. 2024;12(11):2457. https://doi.org/10.3390/pr12112457.
Fraguela-Meissimilly H, Bastías-Monte JM, Vergara C, Ortiz-Viedma J, Lemus-Mondaca R, Flores M, et al. New trends in supercritical fluid technology and pressurized liquids for the extraction and recovery of bioactive compounds from agro-industrial and marine food waste. Molecules. 2023;28(11):4421. https://doi.org/10.3390/molecules28114421.
Espinosa Álvarez C, Vardanega R, Salinas-Fuentes F, Palma Ramírez J, Bugueño Muñoz W, Jiménez-Rondón D, et al. Effect of CO2 flow rate on the extraction of astaxanthin and fatty acids from Haematococcus pluvialis using supercritical fluid technology. Molecules. 2020;25(24):6044. https://doi.org/10.3390/molecules25246044.
Asep EK, Jinap S, Russly AR, Jahurul MH, Ghafoor K, Zaidul IS. The effect of flow rate at different pressures and temperatures on cocoa butter extracted from cocoa nib using supercritical carbon dioxide. J Food Sci Technol. 2016;53(5):2287-97. https://doi.org/10.1007/s13197-016-2191-2.
Grosso C, Ferraro V, Figueiredo AC, Barroso JG, Coelho JA, Palavra AM. Supercritical carbon dioxide extraction of volatile oil from Italian coriander seeds. Food Chem. 2008;111(1):197-203. https://doi.org/10.1016/j.foodchem.2008.03.031.
Capuzzo A, Maffei ME, Occhipinti A. Supercritical fluid extraction of plant flavors and fragrances. Molecules. 2013;18(6):7194-238. https://doi.org/10.3390/molecules18067194.
Yıldırım M, Erşatır M, Poyraz S, Amangeldinova M, Kudrina NO, Terletskaya NV. Green extraction of plant materials using supercritical CO2: Insights into methods, analysis, and bioactivity. Plants. 2024;13(16):2295. https://doi.org/10.3390/plants13162295.
Grosso C, Figueiredo AC, Burillo J, Mainar AM, Urieta JS, Barroso JG, et al. Composition and antioxidant activity of Thymus vulgaris volatiles: Comparison between supercritical fluid extraction and hydrodistillation. J Sep Sci. 2010;33(14):2211-8. https://doi.org/10.1002/jssc.201000192.
Fornari T, Vázquez L, Villanueva-Bermejo D, Hurtado-Ribeira R, Martín Hernández D, Martin D. Effect of moisture and oil content in the supercritical CO2 defatting of Hermetia illucens larvae. Foods. 2023;12(3):490. https://doi.org/10.3390/foods12030490.
Colucci Cante R, Garella I, Gallo M, Nigro R. Effect of moisture content on the extraction rate of coffee oil from spent coffee grounds using Norflurane as solvent. Chem Eng Res Des. 2021;165:172-9. https://doi.org/10.1016/j.cherd.2020.11.002.