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Abstract
Background and Objectives : Nonlinear evolution equations (NLEEs) are crucial in modeling numerous physical
phenomena, from plasma physics to fluid mechanics. The investigation of finding solutions to nonlinear evolution
equations plays an important role since those solutions can explain a variety of the problems' natural events, such
as solitons, vibrations, and finite-speed propagation. There are two fundamental kinds of solutions for NPDEs: exact
solutions and analytical solutions. In this work, we solve the simplified modified Camassa-Holm (SMCH) equation in
the following form:

0, +2ko, -6

xxt

+56%, =0,

where S >0, K is a real constant, and H(X,t) represents the fluid velocity in the x-direction. We employ the
traveling wave transformation to transform the simplified modified Camassa-Holm (SMCH) equation, which is a
nonlinear partial differential equation, into nonlinear ordinary differential equations. Then, we solve the
equation using the simple equation method with the Riccati equation and the modified extended tanh function
method. Two classes of exact explicit solutions, which are in the form of generalized hyperbolic functions and
generalized trigonometric functions. Additionally, the results by the simple equation method with the Riccati
equation and the modified extended tanh function method are vital tools for handling further models arising in
applied science and new physics. For detailed physical dynamical representation, the results can be transformed
into kink waves and periodic waves. Their graphical representations are 2-D and 3-D graphs.

Methodology : Using the simple equation method with the Riccati equation and the modified extended tanh
function method to solve the simplified modified Camassa-Holm (SMCH) equation. There are four main steps
involved in the simple equation method with the Riccati equation:

Step 1. Wave transformation: combining the independent variables X and 1 into one variable, f = X—at. Then

H(X,t) = 6’(§) and & =X—at, where @ is the speed of a traveling wave.
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M .
Step 2. Solution assumption: suppose that the solution is in the following form: 6’(5) = ZaiG' (gg) and G'(é‘)
i=0

conform to the following Riccati equation, G'(e:) = aG? (§)+ﬂ, where the constants & and [ are nonzero.
Step 3. Finding the integer M : the positive integer M that occurs in the solution (step 2) can be estimated by
taking into account the homogeneous balance between the highest-order derivative and the nonlinear terms
appearing in the ordinary differential equation.

Step 4. Obtaining a solution: In order to determine @, aﬂ, and a;, we must first find all terms whose coefficients
are of the same order G', i =0,1, 2,3,..., and then set those terms to zero. We therefore have the exact traveling
wave solution.

There are five main steps involved in the modified extended tanh function method, which are as follows:

Step 1. Wave transformation: combining the independent variables X and 1 into one variable, §: X—at. Then

O(x,t)=0(&), £ =x—ot.

Step 2. Solution assumption: suppose that the solution in the following for
M

0(&)=a,+ Z(aiZ' (&)+bz™ (6:)) and Z'(&) conforms to the following Riccati equation,
i=i

Z'(&)=0+Z%(&), inwhich o is a constant.
Step 3. Finding the integer M : the positive integer M that occurs in the solution (step 2) can be estimated by
taking into account the homogeneous balance between the highest-order derivative and the nonlinear terms

appearing in the ordinary differential equation.

Step 4. Substitute the solution (step 2) and its derivative, as well as Z'(§)=o-+ Zz(g), into the ordinary
differential equation. Following that, by equating our Z', (i =0,+1,+2,...), coefficients to zero, we derive an
algebraic system of equations that can be solved to determine the values of @, bi yO and .

Step 5. To find the exact traveling wave solutions, substitute the values of &, bi y O, @ and from the solutions of

<

Z'(&)=o+Z%(&), into 6(5):a0 —FZ(aiZi (cf)—kbiZ*i (f)) as follows.
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Main Results: The exact traveling wave solutions of the simplified modified Camassa-Holm (SMCH) equation by
using the simple equation method with the Riccati equation, in which solutions 1-2 are shown by hyperbolic

functions and solutions 3-4 are shown by trigonometric functions, are as follows:

6, (x.t) :thanh(W(x_wt)_\”nT(fo)}
04 (X,1)= i\/@tan(@(x—a)tﬁgo),

,éfo >0,V =41. And the exact traveling wave solutions of the simplified modified

2k
1-2ap

Camassa-Holm (SMCH) equation by using the modified extended tanh function method, in which solutions 5-8 are

where @ =

shown by hyperbolic functions and solutions 9-12 are shown by trigonometric functions, are as follows:

0,5 (x,1) =+ _6Tw (J;tanh(J—_U(X_wt)))+\/__Gtanh(:/j;(x—a)t)) ’

—bw Z
0,,(xt)== (\/zcoth(\/z(x_wt)))+ J=o tanh (\/;(x—a)t)) |

foao (1) =2 _GTCU (J;tan(ﬁ(x_wt)>)+«/Etan(\/%(x—a)t)) |

O (X, 1) =% _BTQ) (x/gcot(\/g(x—a)t)))+\/gcot(\/%(x_wt)) ,

2k
4o +1

where @ =

Conclusions : The exact traveling wave solutions of the simplified modified Camassa-Holm (SMCH) equation using
the simple equation method with the Riccati equation and the modified extended tanh function method. The resulting
solutions are represented by hyperbolic and trigonometric functions, which can be physically converted into kink
and periodic waves. The findings further the solution form of hyperbolic functions, which can be transformed into
kink waves, and the solution form of trigonometric functions, which can be transformed into periodic waves.
Moreover, both the simple equation method with the Riccati equation and the modified extended tanh function

method rely on the Riccati equation and are straightforward to comprehend. Also, this study demonstrates that the
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suggested method is appropriate and very useful for determining precise solutions to the exact traveling wave
solutions to the simplified modified Camassa-Holm (SMCH) problem. The method works reliably and effectively
yields accurate solutions for solitary waves.

Keywords : the simplified modified Camassa-Holm equation; the simple equation method with the Riccati equation;

the modified extended tanh function method; the nonlinear partial differential equation; the traveling wave solution
*Corresponding author. E-mail : jiraporn.san@sru.ac.th

Introduction

Nonlinear evolution equations (NLEEs) are crucial in modeling numerous physical phenomena, from
plasma physics to fluid mechanics. The investigation of finding solutions to nonlinear evolution equations plays an
important role since those solutions can explain a variety of natural phenomena, such as solitons, vibrations, and
finite-speed propagation. There are two fundamental kinds of solutions for NPDEs: exact solutions and analytical
solutions. Itis now easier to obtain precise solutions for NLPDEs thanks to the advancement of systematic programs
like Maple and Mathematica. In recent decades, many effective methods, such as the (G’/G) - expansion method
(Djilali & Alli, 2023; Phoosree & Chinviriyasit, 2021), the Kudryashov method (Kudryashov, 2020; Thadee et al., 2022)
the simple equation method (Sanjun & Chankaew, 2022; Chankaew et al., 2023; Thadee & Phoosree, 2024), the
modified simple equation method (Sheikh et al., 2023), the Riccati sub-equation method (Thadee et al., 2023;
Phoosree et al., 2024) the Riccati-Bernoulli sub-ODE method (Alharbi & Almatrafi, 2020; Sanjun et al., 2024), the
Sardar sub-equation method (Rehman et al., 2022), the sine-Gordon method (Ananna et al., 2022; Mamun et al.,
2024), the modified extended tanh-function method (Zahran & Khater, 2016; Sanjun et al., 2024), etc.

The simplified modified Camassa-Holm (SMCH) equation (Islam et al., 2023),

2
u, +2au, —u,, + pu‘u, =0, 1)

where ,B > 0, o is a real constant, and U(X,t) represents the fluid velocity in the x-direction. Although, several
studies have examined the SMCH equation mathematically, few have explicitly discussed its applications in
modeling real-world systems. Since the SMCH equation arises in shallow water wave theory, nonlinear optics, and
plasma physics, the exact solutions obtained in this study are not only mathematically significant but also applicable
to physical phenomena involving wave propagation, such as ion-acoustic waves in plasma, nonlinear fluid flows,

and optical soliton dynamics. These aspects strengthen the applied relevance of the derived solutions. This
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equation was investigated through some methods, for instance, the exp-function method (Irshad et al., 2012), the
extended rational sine—-cosine and sinh-cosh techniques (Onder et al., 2024), the exp (¢(77))— expansion method
(Ali et al., 2016), the modified simple equation process (Islam et al., 2019), the elliptic function expansion scheme
(Gundogdu & Gozlkizil, 2019), the enhanced modified simple equation and the extended Kudryashov schemes
(Devnath et al., 2024), the (G'/G) - expansion method (Liu et al., 2010), and the new auxiliary equation method
(Islam et al., 2023), etc.

This study distinguishes itself by the parallel application of two analytical approaches to the same equation,
enabling a direct comparison of their effectiveness and resulting wave structures. Notably, the SMCH equation has
not previously been analyzed using either the simple equation method with the Riccati equation or the modified
extended tanh function method. This work is the first to introduce such an analysis and presents distinct solutions
not reported in earlier studies. The remainder of this paper is structured as follows: In Section 2, a concise
discussion of the simple equation method with the Riccati equation and the modified extended tanh function
method. Section 3 is devoted to applying these methods to the SMCH problem. The graphical representation of the
research findings is presented in Section 4. Section 5 compares the solutions of the SMCH equation obtained by
the simple equation method with Riccati equation, the modified extended tanh function method, and the exp
(¢(77))— expansion function expansion method. Finally, Section 6 presents the conclusion, summarizing the key

findings and contributions of the study.

Methods
In this section, we present a direct method, namely the simple equation method with the Riccati equation
and the modified extended tanh function method for finding the traveling wave solution to nonlinear equations.

Suppose that the nonlinear partial equation, say, in two independent variables X and t,is given by:
P(6,6,,6,,0,,0,,..)=0, 2)

where P is, in general, a polynomial function of 9(x,t) and its arguments; the subscripts denote the partial
derivatives. Start by considering combining the independent variables X and t into one variable, f We suppose
that

O(x,t)=0(&), &=x—at. 3)
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Where @ is the speed of the traveling wave. The wave variable (3) permits us to convert Eq. (2) into an ordinary

differential equation (ODE) for @ = 9(5)
N(0,0,0",0",..)=0, (4)
where N is a polynomial in 6’(5) and its derivatives in which prime indicates the derivative with respect to f

The simple equation method with the Riccati equation

This method is a step following the simple equation method with the Riccati equation which the authors
examined in (Nofal, 2016; Sanjun et al., 2024). The main steps in this strategy are as follows:
Step 1. Start by considering Egs. (2)-(4).

Step 2. Suppose that the solution of Eq. (4) is in the following form:

)
—_
i
~
I
V=

o
Q)
—
e
N—

()

i=0

Where a,, i =1,2,3,...,M are constants to be determined such that a,, = 0and G’(f) conform to the

following the Riccati equation,

G'(&)=aG?(£)+ 5, (6)

where the constants & and /3 are nonzero. The Riccati equation of the form G'(&)=aG?(&)+ B admits
different classes of solutions depending on the sign of the product a,B f aﬂ < 0, the solution involves hyperbolic
functions such as tanh, which are known to describe localized wave structures like kink waves. Conversely, when
aﬂ >0, the solution involves trigonometric functions such as tan, which correspond to periodic wave patterns.
This classification helps to determine the physical behavior of the solutions obtained from the simple equation

method. Following is an explanation of the two-case solution to Eq. (6):

Case 1: a3 <0,

G(&) =—@tanh (Wg—MJ, (7)

2
where & >0 ana V = £1.

Case 2: o3>0,
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6(6) = YL tan a7 (5+5). ®

where 50 is a constant.

Step 3. In Eq. (4), we apply the homogeneous balance principle between the nonlinear term and the highest-order
derivative. This balancing procedure enables us to determine the positive integer value M of the solution (5).

Step 4. Insert the essential derivatives @', 0", ...of the assumed solution into Eq. (4) for the terms that were of the
same powerin G. By equating the coefficients G', i =0,1, 2, 3...to zero. We obtain @, af3, and a;. Thus, the

solutions to Eq. (2) that include traveling waves are constructed.

The modified extended tanh-function method

According to the modified extended tanh-function method, this method improves upon (Zahran & Khater,
2016; Sanjun et al., 2024). The main steps in this method are as follows:
Step 1. Start by considering Egs. (2)-(4).

Step 2. Suppose that the solution of Eq. (4) is in the following form:

0(&)=a, +§:(aiz‘ (£)+bZ7(£)). 9)

Where a,and by, 1=12,3,...,M are constants to be determined such that a,, # 0 or b,, # 0 and Z’(f)

conform to the following Riccati equation,
Z'(&)=0+2°(¢), (10)

in which o is a constant. Based on the following, Eq. (6) admits a variety of solutions:

Case 1: If O < O, then

z :—\/;tanh(\/?g), (11)
or

z =—\/$coth(\/$§). (12)

Case 2:If O > 0, then

Z :\/;tan(\/gé), (13)

or
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Z = o cot(Joé). (14)

Case 3:If O = O, then

Z=-=. (15)
¢

Step 3. In Eq. (4), we apply the homogeneous balance principle between the nonlinear term and the highest-order
derivative. This balancing procedure enables us to determine the positive integer value M of the solution (9).
Step 4. Substitute Eq. (9) and its derivative as well as Eq. (10) into Eq. (4). Following that, by equating our
Zi,(i =0,+1,+2,...), coefficients to zero, we derive an algebraic system of equations that can be solved to
determine the values of ai,bi,O', and .

Step 5. To find the exact traveling wave solutions of Eq. (2), substitute the values of &;, bi yO, and @ from the

solutions of Eq. (10) into Eqg. (9) as follows.

Results

In this section, we use two analytical methods to solve the SMCH equation.

0, +2ko, -6

xxt

+560%0, =0, (16)

where S >0, K is a real constant. We will reduce it to an ODE using the traveling wave variable § =X—at. The

substitution of the transformation into Eq. (16) leads to:
(2k— )6 + 0" +56°6' =0. (17)

Integrating Eq. (17) with the zero constant, we get:

3

(2k—a))9+a)¢9”+%:0. (18)

The next sections employ the suggested methods to accomplish the intended outcomes.

Solutions through the simple equation method with the Riccati equation

Next, we utilized the balance approach of the highest-order derivative term 8" with the highest nonlinear

terms @° in Eq. (18). Then M equals 1. We have the solution to Eq. (18) as follows:
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0(5)=a,+aG(),
G satisfies Eq. (6). As a result, the 8" and & expressions are as follows:
0" = 2310(2G3 + 2a1a,BG, (20)
0° =al +3a%a,G +3a,a°G* +a’G". (21)
The result of substituting Egs. (19)—(21) into Eq. (18) is

3 3
(Zka0 —wa, +%J+(2ka1 — w3, + 20038, +533, )G +(s3,af )G’ +[2w0¢2a1 +%}G3. (22)

Then we set each coefficient of G' to zero, where 1 =0,1,2,3 yields

G% (2k—a))a0+%a§:0, (23)
G, (2k-w)a, +2wapa, +saja=0, (24)
G?; sa,a’ =0, (25)

G’ 2wa2a1+§af=0. (26)

When this set of mathematical equations is solved, we obtain

,—Ga) 2k (27)
a,=0,a =t and @ = ———.
S 1-2ap

By Egs. (7), (8), (27), and § = X—ait, the exact traveling wave solutions of the SMCH equation are shown for two

cases with an arbitrary constant fo-

Case 1: o3 <0,

S

0, (xt)=% 6mlﬁtanh( —aﬂ(x—cot)—VInT(go)j, (28)
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2k

where = ———
1-2ap

,§O>OandV=i1.

Case 2: o3>0,

0,,(xt)== /%tan(@(x—a)tﬁfo), (29)
2k

where g = ———— and §O is constant.
1-2ap

Solutions through the modified extended tanh-function method

By balancing the highest-order derivative terms 6" with the highest nonlinear terms &% in Eqg. (18), the
balancing number M can be defined as a positive integer, according to the process that will be defined. Therefore,

M equals 1. The following is the solution to Eq. (18):

6(¢)=a,+aZ+bhz™ (30)
Where Z satisfies Eq. (10). Therefore, the expressions for " and & expressions are as follows:
o' (&)=20aZ+28,Z2° +20°0Z° +2007 7, (31)
& (&)=a,” +3a8,Z +3a;0 2" +3a,a;Z° +6a,ab, +3a,b/Z 7 +3a/hZ +3abZ 7 +a'Z° +b'Z .

(32)
The result of substituting Egs. (30)—~(32) into Eq. (18) is

3
[Zka0 —way +%+ ZsaoalbljJr(Zka1 - wa, + 2008, +5a’a, + safbl)Z +(2kbl — oy + 2w, +sa’h, +sab; )Z’l

; ’ (33)
+(sapal ) Z° +(sa,b? )2 2 +(2coa1 +%)Z3 +(2a)0'2b1 +%]z-3 =0.

Then we set each coefficient of Z' to zero, where i = 0,+£1,+2,+3, which yields

2% ke - gy + 5 =
; a, — wa, + 3 +2sa,a,b, =0, (34)
Z*, 2ka, —awa, +2woa, +5a°8 +sa,h =0, (35)
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Z™,  2Kb, —ah +2wob, +sa’h +sal’ =0, (36)
Z?; saja’ =0, (37)
Z7?;, sab’=0, (38)
3
z® 2w@+§%4:0 (39)
3
z &me+%}=o. (40)

When these algebraic equations are resolved, we get

—6(0 —b6w 2k
=0, + ,/ do= . (41)
% &= b=to S ana @ 4o +1

By Egs. (11)-(15), (41), and & =X—ah, the exact traveling wave solutions of the SMCH equation are shown for

two cases: we get

Case 1: If <0, then

O (X,t) =% —bo (Etanh(J__G(X_wt)))+\/—_atanh(«(/j;(x—a)t)) . (42)

—6w o
0,5 (X, t) =%, |— (\/;COth(J__G(X_wt)))+\/;tanh(\/;(x—a)t)) . (43)

2k
4o +1

Where @ =

Case 2: If 0 >0, then

()= 22 [(ﬂa”(ﬁ(x_”%man(fgu_wt))} v
e (1) = F{(ICM(\E(XCM)))JF «/gcot(\/%(xa)t))]l .
o
Where @ = Ao 1
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Discussion

The two methods' exact traveling wave solutions for the SMCH equation are in the form of hyperbolic
functions and trigonometric functions. By substituting the parameters shown in Table 1 and Table 2. Table 1 displays
the graph effects of Eq. (28) using the simple equation method with Riccati, which depicts the wave behaviors as
kink waves, and (29), which depict the wave behaviors as periodic waves. Eqgs. (42)-(43), which depicts the wave
behaviors as kink waves, and Egs. (44)-(45), which depict the wave behaviors as periodic waves, both display the
graph impacts of the modified extended tanh-function method, as shown in Table 2.

It is observed that solutions expressed in hyperbolic function form generally represent kink waves,
characterized by sharp, localized transitions between two distinct states. In contrast, solutions involving
trigonometric functions represent periodic waves, which exhibit smooth, continuous oscillations. This distinction
highlights the versatility of the SMCH equation in modeling both solitary-like and periodic behaviors, depending on

the functional structure of the exact solutions.

Table 1 Parameters values of Egs. (28) and (29)

Egs. Parameters Figures Wave effects
(28) a=—1,F=2k=—05k=—25s=2V=1—10<xt<10 1 Kink
(29) a=1=2k=05k=5s=2 —10<xt<10 2 periodic

Table 2 Parameters values of Egs. (42) - (45)

Egs. Parameters Figures Wave effects
(42) O=—1k=2k=4,s=5 —10<x,t<10 3 Kink
(43) O=—1k=2k=4s5=5 —10<x,t<10 - Kink
(44) O=2k==2k=—4,5=3 —10<x,t <10 periodic
(45) O=2k==2k=—4,5=3 —10<x,t <10 4 periodic

The exact solutions obtained by both methods exhibit two main wave behaviors: kink waves, represented
by hyperbolic functions, and periodic waves, represented by trigonometric functions. The graphs in Figures 1-4
and parameter settings in Tables 1 and 2 confirm these characteristics. Kink waves show abrupt, localized
transitions, while periodic waves display smooth oscillations. Despite their effectiveness, both methods have some
limitations. They are applicable mainly when the target equation can be reduced to an ODE through a traveling

wave transformation. Additionally, they assume that solutions can be expressed in terms of Riccati-type functions,
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which may not hold for all nonlinear equations. Comparatively, the simple equation method with the Riccati equation

is more straightforward and yields concise expressions. The modified extended tanh function method, while more

flexible and capable of generating a wider variety of waveforms, involves more complex algebra. Overall, both

methods provide reliable and interpretable wave solutions.
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Figure 2 The periodic effect in 2-D and 3-D of (29)
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Figure 3 The kink effect in 2-D and 3-D of (41)
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Figure 4 The periodic effect in 2-D and 3-D of (45)

Figures 1-4 illustrate the effects of wave speed @ on both kink and periodic wave solutions. In the case

of the simple equation method with riccati equation, where @ =

, increasing K results in sharper wave

1-2ap

fronts and greater amplitude, particularly for kink-type waves. For the modified extended tanh function method, with

2k

4o +1

y changesin Kk similarly affect the compactness and frequency of periodic waves. These observations

confirm that parameter variations, especially in k , have a direct impact on the physical behavior of the waves.
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As shown in Tables 3 and 4, this section compares solutions of the SMCH equation from the simple

equation method with Riccati and the modified extended tanh function method against those from the exp (¢S(77))—

expansion method (Ali et al., 2016).

The results demonstrate that the solutions derived from our proposed methods are more concise and

structurally simpler than those from the exp expansion method. In particular, our solutions avoid lengthy fractional

expressions and are expressed using standard functions such as tanh and tan, which are easier to interpret and

closely related to physical wave structures. This makes the proposed methods more accessible and practical for

analyzing nonlinear wave behavior.

Table 3 Solutions comparison of the SMCH equation

The exp(¢(n7))— expansion method

The simple equation method with Riccati equation

26u
—JA? =4y tanh [‘/122_“1(77 + cl)] —AJ
26

Ul(ﬂ)ao(

U, (77)=a0— >
+A% —4utan (W(W+Q)J—A
w ()= 6

% exp((77+cl)i —1),

V6(17+¢,) 4’

(2(7+¢,) -1)
J6

(n+¢)

where 17 =Xx-Vt.

u4(77):a0_

us(ﬂ):ao_

Ql(x,t):\/@tanh(\/@(x_wt)_\”%(ﬁ%))

0, (x.t) :—\/@tanh( —O!,B(X—a)t)—VInT(é’)}

2k
1-2ap

/%tan(\/a_ﬁ(x—wtﬁgo),

—6waf

where @ = , & >0 and V =+1.

0, (x,t)=

6’4(X’t):_

tan(\/a_ﬂ(x—wt)+§o),

2k
1-2ap

where @ = and &, is constant.
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Table 4 Solutions comparison of the SMCH equation

The exp((/ﬁ(n))— expansion method The modified extended tanh function method
Jou
u (17) =2, - 2,— ' x,t)= b an Xx—at)))+ g
[ 'ﬂz4ﬂtanh[lzz_4[u(77+cl)J/1] '95( t \i[(\/_t h \/_( t))) J—_Jtanh(J—_J(X_wt))]’
U, (1) =2 - ZxEZy ‘ (xt) \/7 ftanh (x— wt))) ﬁtanh(«%(xa)t))]v
[ﬁﬂz 4ytan[d_12+4ﬂ(77+cl)] ]
= 6w (o3 X Wi g
W) ) N (xt)= s [(ﬁcoth t))) ﬁtanh(ﬁ(xwt))}
T en((rve) .
() - YOO+ &) 2" A (J__"°°th(r(x_“’t)))+»/—_otanh(»/—_o(x—wt))}
) (2(n+c) -1) - ( )
o NG G (x,t)= w[ﬁtan (x- wt)) anjx—w]’
w(n)=2 -2 s Jortan (Vo (x- ot))
where 7 =x-Vt. (x.t)= r[ \Ftan (x- wt))) W]
O, (x.t)= zw [(Ecot (x- cot))) fcot(x%(x—wt))]’
012( \/7[ ’\/_COt X Cl)t))) \/_COt(«/;(X—a)t))}

where Q—A
do+1

Conclusions

The simple equation method with the Riccati equation and the modified extended tanh function method
presented in this article have been successfully implemented to find exact traveling wave solutions for the SMCH
equation. The solutions are expressed in trigonometric and hyperbolic forms. Both methods provide useful solutions
to the SMCH problem, demonstrating that they are practical and effective analytical approaches. Furthermore, we
presented 2-D and 3-D plots of the SMCH equation solutions obtained by the simple equation method with the
Riccati equation (Figures 1-2) and the modified extended tanh function method (Figures 3-4), where all graphs
depict kink and periodic waves.

Throughout this work, the parallel application of two analytical methods allowed for a direct comparison of

their respective solution structures and effectiveness, providing deeper insight into the wave dynamics governed
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by the SMCH equation. The obtained solutions are not only mathematically significant but also have potential

applications in modeling physical phenomena such as shallow water waves, nonlinear optics, and plasma physics.

For future work, it would be worthwhile to explore additional analytical techniques that may yield a wider
variety of exact solutions, thereby revealing more diverse wave structures. Employing alternative methods could

provide a deeper understanding and richer solution sets for the SMCH equation.
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