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Abstract 
Background and Objectives : Diophantine equations, which seek integer solutions to polynomial equations, have 
long been a fundamental and extensively studied topic in number theory. Among these, exponential Diophantine 
equations, where variables appear as exponents, are particularly challenging due to their nonlinear nature and 
profound connections to classical conjectures such as Catalan’s Conjecture. This conjecture, proven by Mihailescu 
in 2004, states that the equation 𝑥𝑎 − 𝑦𝑏 = 1, where 𝑎, 𝑏, 𝑥 and 𝑦 are integers with min {𝑎, 𝑏, 𝑥, 𝑦} > 1 has the 
unique positive integer solution (𝑥, 𝑦, 𝑎, 𝑏) = (3,2,2,3). This study focuses on the exponential Diophantine equation  
𝑝𝑥 + 𝑛𝑦 = 𝑧2,  where 𝑝  is an odd prime, and 𝑛, 𝑥, 𝑦, 𝑧  are non-negative integers. The primary objective is to 
determine all possible integer solutions of this equation under various conditions, with particular emphasis on 
modular restrictions imposed on the parameter 𝑛. The research investigates the interplay between the prime base 
𝑝 and the parameter 𝑛 in determining the existence of solutions. Previous works have contributed foundational 
insights into related problems. Notably, Nagell (1948) proved the finiteness of solutions to the Lebesgue-Nagell 
equation 𝑥2 + 𝐷 = 𝑦𝑛 , for fixed integers 𝐷 and 𝑛. Tijdeman (1976) extended these results using Baker’s theory of 
linear forms in logarithms to show the finiteness of positive integer solutions to exponential Diophantine equations 
of the form 𝑎𝑥 + 𝑏𝑦 = 𝑐, for fixed integers 𝑎, 𝑏, 𝑐. While these studies have illuminated important aspects of the 
problem, a comprehensive understanding of solutions under specific modular constraints on 𝑛 remains incomplete. 
Therefore, this research conducts a detailed analysis of the equation under the modular condition 𝑛 ≡ 7(mod 12). 

This is achieved by employing classical number theory tools such as the theory of quadratic residues and the 
Legendre symbol to rigorously restrict the possible solution values. The methodology involves transforming the 
equation into forms amenable to modular arithmetic analysis and factorization, with the goal of establishing 
necessary and sufficient conditions for the existence of non-negative integer solutions. Analyzing these constraints 
will allow a complete characterization of all possible solution sets and demonstrate the absence of solutions outside 
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these conditions. The results are expected to deepen the theoretical understanding of exponential Diophantine 
equations involving prime powers and perfect squares under modular constraints, extend classical results, and 
provide a framework for investigating more complex cases in future research. 
Methodology : The investigation begins by transforming the equation 𝑝𝑥 + 𝑛𝑦 = 𝑧2 where 𝑝 is an odd prime, and 
𝑛, 𝑥, 𝑦, 𝑧 are non-negative integers, into forms that are amenable to analysis using modular arithmetic and the 
properties of quadratic residues. A key insight involves the application of quadratic residues modulo 12, which 
impose stringent restrictions on the possible values of 𝑛, thereby significantly  influencing the solvability of the 
equation. Specifically, the congruence condition 𝑛 ≡ 7(mod 12) emerges naturally from residue computations and 
serves as a critical criterion for filtering candidate solutions. The research further explores the relationship between 
the given Diophantine equation and the generalized Pell equation of the form 𝑥2 − 𝐷𝑦2 = 1, which is known to have 
infinitely many integer solutions under certain conditions. By establishing this connection, the study relates the 
growth behavior of the original equation’s solutions to those of Pell-type equations. Techniques  derived from the 
theory of linear forms in logarithms, inspired by the foundational work of Tijdeman and Baker, are employed to 
establish explicit upper bounds on the exponents 𝑥 and 𝑦 in terms of 𝑝 and 𝑛. Throughout the analysis, modular 
constraints and the greatest common divisor condition gcd(𝑛, 𝑝) = 1  are examined systematically. The proof 
strategy integrates modular arithmetic with prime factorization methods and classical  analytic number theory to 
derive necessary and sufficient conditions for the existence of non-negative integer solutions to the equation.  
Main Results : The research shows that the Diophantine equation 𝑝𝑥 + 𝑛𝑦 = 𝑧2  admits non-negative integer 
solutions only under highly restrictive circumstances. Specifically, the equation has solutions precisely  
when 𝑝 = 3 and gcd(𝑛, 𝑝) = 1, with the complete solution set given by (𝑝, 𝑛, 𝑥, 𝑦, 𝑧) ∈ {(3, 𝑛, 1,0,2) ∪ (3, 2 ∙ 3𝑠 +

1, 2𝑠, 1, 3𝑠 + 1)|𝑠 ∈ ℤ ≥ 0},  where 𝑠  is a non-negative integer parameter that generates an infinite family of 
solutions directly related to Pell-type equations. This characterization reveals an intricate structural link between the 
original exponential Diophantine equation and quadratic forms. Additionally, the modular condition 𝑛 ≡ 7(mod 12) 

is proven to be both necessary and natural for solutions to exist. The analysis confirms that for any other values of 
𝑝 or 𝑛 not satisfying these conditions, the equation has no non-negative integer solutions. This result not only aligns 
with but also extends existing theorems on the rarity of solutions to exponential Diophantine equations. It 
demonstrates how quadratic residue conditions can tightly constrain possible solutions, providing a deep 
understanding of the interplay between the arithmetic properties of 𝑝 and the modular behavior of 𝑛. Furthermore, 
the results establish a bridge to classical results on Pell equations by showing that the infinite familie of solutions 
correspond precisely to sequences generated by fundamental solutions to related Pell-type equations. 
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Conclusions : This study provides a complete characterization of non-negative integer solutions to the Diophantine 
equation 𝑝𝑥 + 𝑛𝑦 = 𝑧2  for odd primes 𝑝,   demonstrating that solutions exist only under the specific modular 
condition  𝑛 ≡ 7(mod 12) and with 𝑝 = 3 satisfying gcd(𝑛, 𝑝) = 1. The explicit forms of the solutions reveal a 
unique structure rooted in connections to Pell-type equations and quadratic residue theory. These findings deepen 
our understanding of exponential Diophantine equations involving prime powers and perfect squares under modular 
constraints. The research contributes new insight to the field by elucidating the conditions under which such 
equations are solvable, laying a foundation for future work on more complex equations involving higher powers or 
additional variables. Potential applications of the methodological advances include algorithmic number theory, 
cryptography, and computational mathematics, where understanding the interaction between primes, exponents, 
and perfect powers is crucial. By combining classical and modern techniques, this research not only extends the 
known results but also provides a template for studying other exponential Diophantine equations with similar 
structural properties, opening avenues for further exploration in both pure and applied mathematics. 
Keywords : Diophantine equation ; Legendre symbol; quadratic residue; number theory 
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Introduction 
 A Diophantine equation is an equation with one or more unknown variables that has solutions restricted to 
non-negative integers. These types of equations are an important topic in number theory, especially exponential 
equations where variables appear as exponents. Such equations are highly complex due to their nonlinear nature 
and are connected to deep theoretical concepts, such as Catalan’s Conjecture, which was proven by Mihailescu 
in 2004 to have the unique positive integer solution  𝑎𝑝 − 𝑏𝑞 = 1, where (𝑎, 𝑝, 𝑏, 𝑞) = (3,2,2,3). A classical result 
by Nagell (1948) proved that the Lebesgue–Nagell equation 𝑥2 + 𝐷 = 𝑦𝑛 has only finitely many solutions for fixed 
constants 𝐷 and 𝑛. Later, Tijdeman (1976) extended this by applying Baker’s theory of linear forms in logarithms to 
show that exponential Diophantine equations of the form. 𝑥𝑝 − 𝑦𝑞 = 𝑐 with 𝑝, 𝑞 ≥ 2 have finitely many solutions.       
In recent decades, mathematicians have extensively studied various forms of Diophantine equations. For example, 
Sroysang (2013) investigated  the equation  5𝑥 + 7𝑦 = 𝑧2, and found no solutions in non-negative integers. In 2014, 
Sroysang (2014) also studied 7𝑥 + 19𝑦 = 𝑧2  and 7𝑥 + 91𝑦 = 𝑧2, proving that neither has non-negative integer 
solutions. Similarly, Burshtein (2020) analyzed the equation 7𝑥 + 11𝑦 = 𝑧2 and confirmed there are no positive 
integer solution. Orosram & Comemuang (2020) found the unique solution (𝑥, 𝑦, 𝑧) = (1,0,3) for 8𝑥 + 𝑛𝑦 = 𝑧2, 
which is the only non-negative integer solution. Viriyapong & Viriyapong  (2021) studied 𝑛𝑥 + 13𝑦 = 𝑧2, where 𝑛 is 

mailto:dindum4300@gmail.com
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a positive integer  with 𝑛 ≡ 2(mod 39)  and 𝑛 + 1 is not a square number, and found a unique solution 
(𝑛, 𝑥, 𝑦, 𝑧) = (2,3,0,3).  Moonchaisook (2022) examined 𝑝𝑥 + (2𝑝 − 1)𝑦 = 𝑧2  where 𝑝  and 2𝑝 − 1 are prime 
numbers, finding no positive integer solutions. Pakapongpun & Chattae (2022) extended the study of 𝑝𝑥 + 7𝑦 =

𝑧2, identifying some specific solutions. Jantoy & Intep (2024) showed that for many cases of  
𝑡𝑥 + (𝑡 + 3𝑘)𝑦 = 𝑧2, there are no non-negative integer solutions when 𝑡 and 𝑘 lie within certain ranges. Tadee 
(2025) investigated cubic exponential Diophantine equations of the form 13𝑥 + 𝑎𝑦 = 𝑧3, Identifying conditions for 
both existence and non-existence of non-negative integer solutions. 
 However, Diophantine equation of the form 

𝑝𝑥 + 𝑛𝑦 = 𝑧2      (1) 

where 𝑝 is an odd prime, 𝑛 ≡ 7(mod 12), and 𝑥, 𝑦, 𝑧 are non-negative integers, have not been thoroughly analyzed 
to determine the necessary and sufficient conditions for the existence of solutions. This research aims to 
systematically study such equations by transforming them into forms suitable for modular arithmetic and quadratic 
residue analysis, focusing on identifying possible values of 𝑛, 𝑥, 𝑦, 𝑧 under modular constraints. The study employs 
elementary number theory techniques, such as properties of quadratic residues and the Legendre symbol, to 
exclude impossible cases and confirm valid solutions. This approach enables a complete and systematic 
characterization of all possible solutions. 
 
Methodology 
 This section presents the key definitions, lemmas, and theorems that are used in the proofs of the main 
theorems in this paper. The proofs of these results are not provided here, readers who are interested may refer to 
the cited references for further details. 
Definition 1. (Burton, 2010)  
Let 𝑝 be an odd prime and let 𝑎 be an integer such that gcd(𝑎, 𝑝) = 1. If the congruence 𝑥2 ≡ 𝑎(mod 𝑝) has a 
solution, then 𝑎 is called a quadratic residue modulo 𝑝; otherwise, 𝑎 is called a quadratic nonresidue modulo 𝑝. 
Definition 2. (Burton, 2010)   
Let 𝑝 be an odd prime number and 𝑎 be an integer such that  gcd(𝑎, 𝑝) = 1. 

The Legendre symbol (𝑎

𝑝
) is defined as follows. 

   (
𝑎

𝑝
) = {

1     if 𝑎 i𝑠 a quadratic residue modulo 𝑝 and 𝑎 ≢ 0 (mod 𝑝),
−1 if 𝑎 i𝑠 a quadratic nonresidue modulo  𝑝,                            

0    if 𝑎 ≡ 0(mod 𝑝).                                                                         
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Theorem 1. (Burton, 2010)  

If 𝑝 is a prime number that is an odd integer, then 
 

(
2

𝑝
) = {

  1 ,   𝑝 ≡ 1(mod 8) or  𝑝 ≡ 7(mod 8),

−1,   𝑝 ≡ 3(mod 8) or  𝑝 ≡ 5(mod 8).
 

 

Proposition 1. If 𝑥 is an integer, then 𝑥2 ≡ 0 ,1(mod 4). 

Proof. See Thongnak et al. (2022). 
Lemma 1.  Let  𝑝 be a prime number. Then the  Diophantine equation 𝑝𝑥 + 1 = 𝑧2 has exactly two solutions in non-
negative integers (𝑝, 𝑥, 𝑧),  namely (2,3,3) and (3,1,2).  
In particular, if 𝑝 is an odd prime, the unique solution is (3,1,2). 

Proof. We distinguish two cases. 
Case 1. 𝑝 = 2. 

The equation becomes 2𝑥 = 𝑧2 − 1 = (𝑧 − 1)(𝑧 + 1). Since 𝑧 must be odd, 
gcd(𝑧 − 1)(𝑧 + 1) = 2. Thus both factors are powers of 2, say 𝑧 − 1 = 2𝑚, 𝑧 + 1 = 2𝑛 with 𝑛 > 𝑚 ≥ 1. 

Subtraction gives 2𝑛 − 2𝑚 = 2. which means that 2𝑚(2𝑛−𝑚 − 1) = 2. The only solution is 𝑚 = 1 and 𝑛 − 𝑚 = 1, 

which yields 𝑏 = 2, hence  𝑧 = 3 and 𝑥 = 3. Therefore the solution is (2, 3, 3). 

Case 2. 𝑝 > 3. 

Then we have 𝑝𝑥 = (𝑧 − 1)(𝑧 + 1)  with gcd(𝑧 − 1, 𝑧 + 1) = 1. Thus each factor is a power of 𝑝, say 𝑧 − 1 = 𝑝𝑎  

and 𝑧 + 1 = 𝑝𝑏 with 𝑏 > 𝑎 ≥ 0. Subtracting gives  𝑝𝑏 − 𝑝𝑎 = 2, which implies that 𝑝𝑎(𝑝𝑏−𝑎 − 1) = 2. 

Since 𝑝 is odd, this equation forces 𝑎 = 0 and 𝑝𝑏 − 1 = 2. Hence 𝑝𝑏 = 3, so 𝑝 = 3 and 𝑏 = 1. Consequently, 
𝑧 = 2 and 𝑥 = 1. Therefore the unique solution in this case is (3,1,2).  

This completes the proof.    
 

Lemma 2.  Let  𝑦, 𝑧 and 𝑛 be non-negative integers with 𝑛 ≡ 7(mod 12).  

Then the Diophantine equation 1 + 𝑛𝑦 = 𝑧2 has no solution.  
Proof.  Assume that (𝑛, 𝑦, 𝑧) is a solution in non-negative integers of the equation 1 + 𝑛𝑦 = 𝑧2.             
Suppose that 𝑛 ≡ 7(mod 12). Then it follows that  𝑛 ≡ 1(mod 3),  we have 𝑛𝑦 ≡ 1(mod 3)..  

Then 1 + 𝑛𝑦 ≡ 2(mod 3). Thus, 𝑧2 ≡ 2(mod 3),  which is a contradiction, because 2 is a quadratic non-residue  
modulo 3. By Theorem 1, (2

3
) = −1, and hence, there are no integers 𝑧 satisfying the equation in this case. 

Therefore, there is no non-negative integer solution.   
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Lemma 3. Let  𝐴 ∈ ℤ and 𝑘 ≥ 2.  

Then     (12𝐴 + 7)𝑘 ≡ { 
1 (mod 12), if 𝑘 is even,               
7 (mod 12), if 𝑘 is odd.                 

 

Proof.  Observe that  12𝐴 + 7 ≡ 7(𝑚𝑜𝑑 12). 

Hence (12𝐴 + 7)𝑘 ≡ 7𝑘  (mod 12), so it suffices to determine the residue of  7𝑘 modulo 12. 

We proceed by mathematical induction on 𝑘 ≥ 0. 

When 𝑘 = 0, clearly 70 = 1 ≡ 1 (mod 12)  (even exponent). 
When 𝑘 = 1, we have 71 = 7 ≡ 7 (mod 12) (odd exponent). 
Thus, the claim holds for  𝑘 = 0 and  𝑘 = 1. 
Assume now that for some 𝑛 ≥ 1, the statement holds                                                                                         

7𝑛 ≡ {
 1 (mod 12), 𝑛 is even,

7 (mod 12), 𝑛 is odd.
 

We must show that the result also holds for 𝑛 + 1. We compute 7𝑛+1 ≡ 7 ∙ 7𝑛 . 

If 𝑛 is odd, then by the induction hypothesis, 7𝑛 ≡ 7(mod 12). Thus,  7𝑛+1 ≡ 7 ∙ 7 = 49 ≡ 1 (mod 12).  

If 𝑛 is even, then 7𝑛 ≡ 1(mod 12). So  7𝑛+1 ≡ 7 (mod 12). Hence, the statement holds for 𝑛. 

Thus the statement holds for 𝑛 + 1 whenever it holds for 𝑛.  

By the principle of mathematical induction, the claim is established for all 𝑘 ≥ 0.   

 

Lemma 4. Let  𝑀 ∈ ℤ and 𝑛 ∈ ℤ ≥ 0.  

Then     (12𝑀 + 3)𝑛 ≡ {

1(mod 12), if  𝑛 = 0,        

3(mod 12), if  𝑛 is odd,   

9(mod 12), if  𝑛 is even.

   

Proof. Since 12𝑀 + 3 ≡ 3(mod 12), it suffices to evaluate 3𝑛(mod 12). By the same inductive argument as in 
Lemma 3, we obtain 3𝑛 ≡ 3(mod 12), if 𝑛 is odd 3𝑛 ≡ 9(mod 12), if 𝑛 is even, and 30 ≡ 1(mod 12). This 
completes the proof.   
 

Lemma 5. Let 𝑠 ∈ ℤ ≥ 1 and 𝑛, 𝑦 ∈ ℤ > 0 satisfy  
𝑛𝑦 = 2 ∙ 3𝑠 + 1 and 𝑛 ≡ 7(mod 12). Then 𝑦 = 1.  

Proof. Suppose, for contradiction, that 𝑦 > 1. Since 𝑛 ≡ 7(mod 12), write 𝑛 ≡ 12𝐴 + 7 with 𝐴 ∈ ℤ. By Lemma 3, 
for every integer 𝑘 ≥ 1 we have (12𝐴 + 7)𝑘 ≡ 7(mod 12) when 𝑘 is odd and  (12𝐴 + 7)𝑘 ≡ 1(mod 12) when 𝑘 
is even. Because 𝑛𝑦 = 2 ∙ 3𝑠 + 1 ≡ 7(mod 12), Lemma 3 forces 𝑦 to be odd, in particular 𝑦 ≥ 3. Subtracting 1 
from both sides of 𝑛𝑦 = 2 ∙ 3𝑠 + 1 yields 𝑛𝑦 − 1 = 2 ∙ 3𝑠. Using the difference-of-powers identity, 

𝑛𝑦 − 1 = (𝑛 − 1)(𝑛𝑦−1 + 𝑛𝑦−2+. . . +1). 
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Define 

𝑆: = ∑ 𝑛𝑖 =

𝑦−1

𝑖=0

𝑛𝑦−1 + 𝑛𝑦−2+. . . +1. 

 

Since 𝑛 ≡ 7(mod 12), the integer 𝑛 is odd; and as 𝑦 is odd, each summand 𝑛𝑖 is odd and the number of 
summands is odd, hence 𝑆 is odd. From the defining relation 𝑛𝑦 = 2 ∙ 3𝑠 + 1 we obtain 

𝑛𝑦 − 1 = (𝑛 − 1)𝑆 = 2 ∙ 3𝑠. 

From (n − 1)S = 2 ∙ 3s, every prime divisor of n − 1 and of S belongs to {2,3}. Since S is odd, all its prime divisors 
are equal to 3. Moreover, n ≡ 7(mod 12) implies 𝑛 ≡ 1(mod 3), hence 3|(𝑛 − 1).  
Write 𝑛 − 1 = 2𝑎3𝑡 ,    𝑎, 𝑡 ∈ ℤ ≥ 1. Then 𝑆 =

2∙3𝑠

2𝑎3𝑡 = 21−𝑎3𝑠−𝑡. 

Because 𝑆 is odd, we must have 𝑎 = 1; therefore 𝑆 = 3𝑠−𝑡 with 𝑡 ≥ 1. In particular, 𝑆 ≤ 3𝑠−1 ≤ 3𝑠. 

On the other hand, since 𝑦 ≥ 3, 

𝑆 = 𝑛𝑦−1 + 𝑛𝑦−2+. . . +1 ≥ 1 + 𝑛 + 𝑛2 > 𝑛2. 

Using 𝑛 = 2 ∙ 3𝑠 + 1, we compute 
𝑛2 = (2 ∙ 3𝑠 + 1)2 = 4 ∙ 32𝑠 + 4 ∙ 3𝑠 + 1 > 4 ∙ 32𝑠, 

Hence 𝑆 > 4 ∙ 32𝑠. Combining this with the previous bound  𝑆 ≤ 3𝑠 gives S ≤ 3s and 𝑆 > 4 ∙ 32𝑠, 

Which is impossible, since 
4∙32𝑠

3𝑠 = 4 ∙ 3𝑠 ≥ 12 (𝑠 ≥ 1). 

This contradiction completes the proof.   

  

Results  
        The study of finding the solution of the Diophantine equation 𝑝𝑥 + 𝑛𝑦 = 𝑧2  for  𝑛, 𝑥, 𝑦 and 𝑧 are  non-negative 
integer found that this equation has non-negative integer solutions (𝑝, 𝑛, 𝑥, 𝑦, 𝑧) are  non-negative integer t h a t  i s 
(𝑝, 𝑛, 𝑥, 𝑦, 𝑧) ∈ {(3, 𝑛, 1,0,2) ∪ (3, 2 ∙ 3𝑠 + 1, 2𝑠, 1, 3𝑠 + 1)}  for 𝑠 is a non-negative integer where 𝑛 ≡ 7(mod 12) 

and 𝑝 is an odd prime and gcd(𝑛, 𝑝) = 1.  We can present the proof of this theory as follows. 
Th e o r e m  2. Let 𝑝 be an odd prime number and let 𝑛 and 𝑦 be non-negative integers such that 𝑛 ≡ 7(mod 12) 
and  gcd(𝑛, 𝑝) = 1. Then, the Diophantine equation 𝑝𝑥 + 𝑛𝑦 = 𝑧2 has a solution  in non-negative (𝑥, 𝑦, 𝑧) of the 
form (𝑝, 𝑛, 𝑥, 𝑦, 𝑧) ∈ {(3, 𝑛, 1,0,2) ∪ (3, 2 ∙ 3𝑠 + 1, 2𝑠, 1, 3𝑠 + 1)}, where 𝑠 is a non-negative integer.  
Proof.  The Diophantine equation 𝑝𝑥 + 𝑛𝑦 = 𝑧2 is divided into 4 cases as follows. 

Case 1 For 𝑥 = 0 and 𝑦 = 0, so  𝑧2 = 2 is impossible because z is an integer. 
Case 2 Let 𝑥 = 0 and 𝑦 ≥ 1, so that the equation becomes  1 + 𝑛𝑦 = 𝑧2.  According to Lemma 2, it can 

be concluded that the equation 1 + 𝑛𝑦 = 𝑧2 has no solution in non-negative integers.  
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Case 3 For the case 𝑦 = 0 and 𝑥 ≥ 1, the equation  𝑝𝑥 + 1 = 𝑧2,  
has by Lemma 1, a solution in non-negative integers given by (𝑝, 𝑥, 𝑦, 𝑧)  = (3,1,0,2).  

Case 4 Let 𝑥 ≥ 1 and  𝑦 ≥ 1. Since  𝑝 is an odd prime, and  𝑛 ≡ 1(mod 3) and  𝑛 ≡ −1(mod 4), 

we consider the  following three cases. 
Case 4.1  Let 𝑝 = 3.  

From equation (1), we obtain 3𝑥 + 𝑛𝑦 = 𝑧2 ≡ (−1)𝑥 + (−1)𝑦(mod 4), since 𝑧2 is an even number and satisfies 
𝑧2 ≡ 0(mod 4). Therefore we need to consider the following two subcases for the parities of 𝑥 and y. 

Subcase 4.1.1  Let  𝑥  be even and let 𝑦 be odd. 
Suppose 𝑥 = 2𝑠 ≥ 1,  where  𝑠 are non-negative integers. So that 3𝑥 = (3s)2.  

 We consider the Diophantine (3s)2 + 𝑛𝑦 = 𝑧2.    

Observe that we can rearrange this equation as a difference of squares   𝑛𝑦 = 𝑧2 − (3s)2. 

which  factors as  𝑛𝑦 = (𝑧 + 3𝑠)(𝑧 − 3𝑠).       

Let 𝑦 = 𝑣 + 𝛾,  𝑛𝑣 = 𝑧 + 3𝑠 and 𝑛𝛾 = 𝑧 − 3𝑠 for some non-negative integer  𝑣, 𝛾 and 𝑣 > 𝛾 ≥ 0,              

which makes  𝑛𝛾[𝑛𝑣−𝛾 − 1] = 2 ∙ 3𝑠. Since 𝑣 > 𝛾, it follows that  𝑛𝑣−𝛾 − 1 is an integer. 
Thus 𝑛𝛾|2 ∙ 3𝑠 . Given that gcd(3, 𝑛) = 1, it follows that 𝑛𝛾|2. Since 𝑛 ≡ 7(mod 12), we have  𝑛𝛾 = 1  ,that is 
 𝛾 = 0, 𝑧 = 3𝑠 + 1. So we have  𝑛𝑣 − 1 = 2 ∙ 3𝑠, that is   𝑛𝑦 = 2 ∙ 3𝑠 + 1.  

From the equation  𝑛𝑦 = 2 ∙ 3𝑠 + 1,  we aim to determine a value of 𝑛 such that the condition 𝑛 ≡ 7(mod 12) is 
satisfied, as required by Lemma 3. 
According to Lemma 3, if 𝑛 ≡ 7(mod 12), then 

 

      𝑛𝑘 ≡ {
1 (mod 12), if 𝑘 is even,

7 (mod 12), if 𝑘 is odd.
 

 

Since 𝑦 is odd, we have 𝑛𝑦 ≡ 7(mod 12). Thus, 𝑛𝑦 − 1 ≡ 6(mod 12).  
From the relation 𝑛𝑦 = 2 ∙ 3𝑠 + 1, we obtain 2 ∙ 3𝑠 + 1 ≡ 7(mod 12). 

Because 3𝑠 ≡ 3(mod 12) when 𝑠 is odd and 3𝑠 ≡ 9(mod 12) when 𝑠 is even, the congruence holds for all 
integers 𝑠 ≥ 1. Thus the modular condition imposes no further restriction on 𝑠. 
Finally, by applying Lemma 5, we deduce that 𝑦 = 1, 𝑛 = 2 ∙ 3𝑠 + 1, z = 3s + 1, which is fully consistent with the 
congruence in Lemma 3. 
From 𝑛 = 2 ∙ 3𝑠 + 1, let   𝑛 = 𝑎 ∙ 𝑏,  where 𝑎, 𝑏 ∈ ℤ+and 𝑎 ≤ 𝑏. Consider the following two cases. 

1)  𝑛 is a prime number. 
We set 𝑎 = 1. Therefore 𝑏 = 𝑛 = 2 ∙ 3𝑠 + 1, 𝑦 = 1, 𝑧 = 3𝑠 + 1. 
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Thus (𝑝, 𝑛, 𝑥, 𝑦, 𝑧)  = (3, 2 ∙ 3s + 1, 2𝑠, 1,  3s + 1).  
2)  𝑛 is a composite number. 

Assume 𝑛 = 𝑎 ∙ 𝑏  with 1 < 𝑎 ≤ 𝑏, then  𝑎𝑏 = 2 ∙ 3𝑠 + 1,  𝑦 = 1.  

We then obtain,  𝑧2 = 32𝑠 + 𝑛 = 32𝑠 + (2 ∙ 3𝑠 + 1) = (3𝑠 + 1)2 = 32𝑠 + 𝑎𝑏 = 32𝑠 + 𝑛 for the given 𝑠 ≥ 1.  
Hence, subcase 4.1.1 has a solution (𝑝, 𝑛, 𝑥, 𝑦, 𝑧) which are non-negative integer (3, 𝑎𝑏, 2𝑠, 1, 3𝑠 + 1).   

subcase 4.1.2  Let 𝑥 is odd and y is even. 
Suppose 𝑥 = 2𝑠 + 1 and 𝑦 = 2𝑓,  where 𝑓 and  𝑠  are non-negative integers.  
Then, we have the Diophantine equation   3𝑥 + (𝑛𝑓)2 = 𝑧2. 

This can be rewritten as a difference of squares, 3𝑥 = 𝑧2 − (𝑛𝑓)2 = (𝑧 + 𝑛𝑓)(𝑧 − 𝑛𝑓). 

Let 3𝑥−ℎ = 𝑧 + 𝑛𝑓 , and 3ℎ = 𝑧 − 𝑛𝑓 , where ℎ is anon-negative  integer such that 𝑥 > ℎ.  
Then, 3ℎ[3𝑥−2ℎ − 1] = 2 ∙ 𝑛𝑓 . We let ℎ be a non-negative integer satisfying the condition 𝑥 − 2ℎ ≥ 0.   
Under this assumption, the term 3𝑥−2ℎ − 1 is an integer, and it follows that 3ℎ|2 ∙ 𝑛𝑓 . 

Since  gcd(3, 𝑛) = 1, by Lemma 3 we have 2 ∙ 𝑛𝑓 + 1 ≡ 3(mod 12).  

From Lemma 4,  since 3x ≡ 3(mod 12), we get 3𝑥 = 32𝑠+1 ≡ 3(mod 12), implying that  32𝑠 ≡ 1(mod 12).  

Thus 𝑠 = 0, and hence 𝑥 = 1. Since  2 ∙ 𝑛𝑓 ≡ 2(mod 12), we conclude that  𝑛𝑓 ≡ 1(mod 12).  

Hence 𝑛𝑓 = 1, which gives 𝑓 = 0. and 𝑦 = 0. Therefore, there exists a solution in this case (𝑝, 𝑥, 𝑦, 𝑧) = (3,1,0,2).  
However, under the condition 𝑦 ≥ 1, we must have 𝑓 ≥ 1, and thus the assumption 𝑓 = 0 is no longer valid. 
Consequently, the conclusion (𝑝, 𝑥, 𝑦, 𝑧) = (3, 1, 0, 2) does not satisfy the required condition  𝑦 ≥ 1, and must be 
excluded from the set of valid solutions. 
 Case 4.2 Let  𝑝 ≡ 1(mod 3). 
From equation (1), it can be concluded that 𝑧2 ≡ 2(mod 3). 

By Theorem 1, (2

3
) = −1. Therefore, in this case, there is no solution. 

Case 4.3 Let  𝑝 ≡ 2 (mod 3).  It follows immediately that 𝑝 > 3. 

 We divide the consideration into three subcases on the parities  of  𝑥 and 𝑦.  
Subcase 4.3.1  𝑥 is  an even number and 𝑦 ≥ 1 such that 𝑝𝑥 ≡ 1(mod 3) and 𝑛 ≡ 1(mod 3).  

From equation (1), it can be concluded that 𝑧2 ≡ 2(mod 3).  By Theorem 1, (2

3
) = −1.  

Therefore, in this case, there is no solution. 
  Subcase 4.3.2 Let 𝑥 be an odd number and  𝑦  an even number, Set  𝑦 = 2𝑓  for some non-

negative integers 𝑓. From equation (1), we have 𝑝𝑥 = (𝑧 − 𝑛𝑓)(𝑧 + 𝑛𝑓). Which implies there exists a non-negative 
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integer 𝑟 such that 𝑝𝑟 = 𝑧 − 𝑛𝑓 and 𝑝𝑥−𝑟 = 𝑧 + 𝑛𝑓 . Since 𝑧 + 𝑛𝑓 > 𝑧 − 𝑛𝑓 ,  we must have 𝑥 − 𝑟 > 𝑟, that is 𝑥 >

2𝑟. Then we find (𝑧 + 𝑛𝑓) − (𝑧 − 𝑛𝑓) = 𝑝𝑥−𝑟 − 𝑝𝑟 , so that  2𝑛𝑓 =  𝑝𝑟(𝑝𝑥−2𝑟 − 1).. Because 𝑥 > 2𝑟,  
it follows that 𝑝𝑥−2𝑟 − 1 is an integer, which leads to  𝑝𝑟|2𝑛𝑓 . Now, since gcd(𝑝, 𝑛) = 1,  it follows that 𝑝𝑟|2. 

Therefore 𝑝𝑟 = 20 = 1, which gives  𝑟 = 0. Thus, 𝑝𝑥 = 2𝑛𝑓 + 1. However, since  𝑝𝑥
≡ 2(mod 3).  

Hence, no solution exists in this case. 
Subcase 4.3.3 Let 𝑥 be an odd number and  𝑦 be an odd number,   

Assume that 𝑥 = 2𝑠 + 1 and  𝑦 = 2𝑓 + 1, where 𝑠, 𝑓 ∈ ℤ ≥ 0.   

Since 𝑝 ≡ 2(mod 3), it follows that: 
𝑝𝑥 = 𝑝2𝑠+1 ≡ 2(mod 3), and 𝑛𝑦 = 𝑛2𝑓+1 ≡ 1(mod 3). 

Bstituting into the original Diophantine equation: 
 

 𝑝𝑥 − 1 = 𝑧2 − 𝑛2𝑓+1 − 1.      (2) 
 

We obtain: 𝑝𝑥 − 1 = 𝑧2 − 𝑛2𝑓+1 − 1. Now observe that the left-hand side can be factored using the identity: 
 

𝑎𝑥 − 1 = (𝑎 − 1)(𝑎𝑥−1 + 𝑎𝑥−2 + ⋯ + 𝑎 + 1). 

Applying this to 𝑝𝑥 − 1, we get: 
(𝑝 − 1)(𝑝𝑥−1 + 𝑝𝑥−2 + ⋯ + 𝑝 + 1) = 𝑧2 − 𝑛2𝑓+1 − 1.   (3) 

Let us define the geometric sum as: 

𝑅 = 𝑝𝑥−1 + 𝑝𝑥−2 + ⋯ + 𝑝 + 1 =
𝑝𝑥 − 1

𝑝 − 1
. 

Substituting back into equation (3), we obtain: 
 

(𝑝 − 1)𝑅 = 𝑧2 − 𝑛2𝑓+1 − 1.     (4) 
 

To analyze this equation, note that both 𝑝 − 1 and 𝑅 are positive integers, and their product equals the right-hand 
side. Since the right-hand side is fixed once 𝑧 and 𝑛 are chosen, only specific combinations of 𝑝 − 1 and 𝑅 can 
satisfy the equation. We consider two cases: 

a) 𝑥 = 1. 

Since 𝑅 = 𝑝𝑥−1 + 𝑝𝑥−2 + ⋯ + 𝑝 + 1 =
𝑝𝑥−1

𝑝−1
, we have 𝑅 = 1. 

However, for any odd prime 𝑝 > 3  

𝑅 = 𝑝𝑥−1 + 𝑝𝑥−2 + ⋯ + 𝑝 + 1 > 4 > 1 

which is a contradiction. Therefore, the case 𝑥 = 1 admits no solution.  
b) 𝑥 ≥ 3. 

Let us assume that the Diophantine equation 𝑝𝑥 + 𝑛𝑦 = 𝑧2, admits a solution in positive integers, where 𝑥 is an 
odd integer with 𝑥 ≥ 3, and the primes 𝑝 and 𝑛 satisfy 𝑝 ≡ 2(mod 3) and 𝑛 ≡ 1(mod 3), respectively. 
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Since 𝑝 ≡ 2(mod 3), and 𝑥 is odd it follows that 𝑝𝑥 ≡ 2(mod 3). Similarly,  
since 𝑛 ≡ 1(mod 3), we obtain 𝑛𝑦 ≡ 1(mod 3). Therefore, the sum becomes 

𝑧2 = 𝑝𝑥 + 𝑛𝑦 ≡ 2 + 1 ≡ 0(mod 3), 

which implies that 3|𝑧. Let us write 𝑧 = 3𝑘 for some 𝑘 ∈ ℕ. Substituting into the original equation gives 
𝑝𝑥 + 𝑛𝑦 = 𝑧2 = 9𝑘2, 

which yields 

𝑝𝑥 = 9𝑘2 − 𝑛𝑦 . 

This expression implies the inequality 𝑝𝑥 < 9𝑘2, and hence 𝑝
𝑥

2 < 3𝑘 = 𝑧, which gives the lower bound 𝑧 > 𝑝
𝑥

2 .  
On the other hand, since 𝑛𝑦 > 0, we may assume that 𝑛𝑦 < 𝑝𝑥.   

we also have 𝑧2 = 𝑝𝑥 + 𝑛𝑦 < 2𝑝𝑥 , then 𝑧 < √2𝑝𝑥 = √2 ∙ 𝑝
𝑥

2. 

Consequently, the value of 𝑧 must lie in the open interval 𝑝
𝑥

2 < 𝑧 < √2 ∙ 𝑝
𝑥

2. 

However, since 𝑥 is an odd integer, 𝑥

2
 is not an integer, and hence 𝑝

𝑥

2 is irrational.  

Therefore, the interval (𝑝
𝑥

2, √2 ∙ 𝑝
𝑥

2) contains no integer. This contradicts the assumption that 𝑧 is a positive 
integer. In a similar manner, if 𝑛𝑦 ≥ 𝑝𝑥 , the same contradiction arises by symmetry of the argument. Thus, under 
the given assumptions, the equation 𝑝𝑥 + 𝑛𝑦 = 𝑧2 has no solution in positive integers when 𝑥 ≥ 3 is odd, 
𝑝 ≡ 2(mod 3), and 𝑛 ≡ 1(mod 3). Hence, no positive integer solution exists in this case. 

From the subcase  4.3.1-4.3.3, we can conclude that the case 4.3 has no solution of non-negative integer. 
F r o m  t h e  p r o o f  o f  4 cases, it can be concluded that  equation (1) are given by (𝑝, 𝑛, 𝑥, 𝑦, 𝑧) ∈

{(3, 𝑛, 1,0,2) ∪ (3, 2 ∙ 3𝑠 + 1, 2𝑠, 1, 3𝑠 + 1)},  for 𝑠 is a non-negative integer where  as 𝑛 ≡ 7(mod 12) and 
gcd(𝑛, 𝑝) = 1. This completes the proof.   
 

Corollary 1. The Diophantine equation 11𝑥 + 19𝑦 = 𝑤4 has no non-negative integer solution, where 𝑥, 𝑦 and 𝑤 
are  non-negative integers.  
Proof.   Suppose that  𝑧 = 𝑤2, so 11𝑥 + 19𝑦 = 𝑤4 = 𝑧2   
From Theorem 2,  11𝑥 + 19𝑦 = 𝑤4 has no solution in non-negative integers.   

Corollary 2.   The Diophantine equation  𝑝𝑥 + 7𝑦 = ℎ2𝑡 where 𝑝 be prime and 𝑝 > 3, has no non-negative integer 
solution, where 𝑡, 𝑥, 𝑦 and ℎ are  non-negative integers.  
Proof :  Let 𝑝 be prime number and 𝑝 > 3 

Suppose that   𝑧 = ℎ𝑡, so 𝑝𝑥 + 𝑛𝑦 = ℎ2𝑡 = 𝑧2 . 
From Theorem 2 , the Diophantine equation  𝑝𝑥 + 7𝑦 = ℎ2𝑡 has no solution in non-negative integers.      
Corollary 3.  The Diophantine equation  5𝑥 + 𝑛𝑦 = 𝑤4 where 𝑛 ≡ 7(mod 12) and  𝑥, 𝑦 are non-negative integers. 
Proof .  Let 𝑝 = 5 and  𝑧 = 𝑤2, so that    5𝑥 + 𝑛𝑦 = 𝑧2 . 
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From Theorem 2 , the Diophantine equation  5𝑥 + 𝑛𝑦 = 𝑧2 has no solution in non-negative integers.        
Corollary 4.  7𝑥 + 𝑛𝑦 = 𝑢6𝑘+2  where 𝑛 ≡ 7(mod 12) for 𝑛, 𝑥, 𝑦 and 𝑢 are non-negative integers. 
 Proof. Let 𝑘 be a positive integer and 𝑧 = 𝑢3𝑘+1. Then the Diophantine equation 7𝑥 + 𝑛𝑦 = 𝑧2.  By Theorem 2, 
this equation has no solutions in non-negative integers.   
Corollary 5.  172𝑘+1 + 𝑛𝑦 = 𝑢𝑘2

  where 𝑛 ≡ 7(mod 12) for 𝑛, 𝑥, 𝑦 and 𝑢 are non-negative integers. 
Proof. Let 𝑘 be a positive integer,  𝑧 = 𝑢𝑘 and 𝑥 = 2𝑘 + 1. Then the Diophantine equation 17𝑥 + 𝑛𝑦 = 𝑧2.   

By Theorem 2, this equation has no solution in non-negative integers.   

 

Discussion  
 The results of this study show that the Diophantine equation  𝑝𝑥 + 𝑛𝑦 = 𝑧2 where 𝑝 is an odd prime  and 
𝑛 ≡ 7(mod 12) has solutions only in specific cases. When compared with previous works, such as those by 
Sroysang (2013, 2014), it is evident that Diophantine equation involving prime numbers tend to have few or no 
solutions. Similarly, Burshtein (2020) demonstrated that the factorization structure involving primes strongly 
influences the existence of solutions. Dokchan & Pakapongpun (2021) showed that when primes appear in pairs 
like 𝑝  and 𝑝 + 20 , the equation admits no positive integer solutions. Likewise, Moonchaisook (2022) and 
Pakapongpun & Chattae (2022) confirmed this trend, illustrating that the structure of equations involving primes and 
specific constants severely restricts the number of solutions or eliminates them entirely. Furthermore, Tadee (2023, 
2024) investigated more complex cubic equations and found that adding certain conditions results in very few or 
no solutions. This is consistent with the findings of Viriyapong & Viriyapong (2021), who applied modular conditions 
on 𝑛 and identified unique specific solutions. Overall, the evidence clearly shows that when Diophantine equations 
involve primes and modular constraints, the possible solutions become highly restricted. Small modular conditions 
on 𝑛 can decisively determine whether the equation has solutions or not. This consistent pattern across multiple 
studies confirms that analyzing variable constraints is key to solving Diophantine equations. Beyond deepening the 
understanding of number theory, these findings can support teaching in number theory courses and serve as a 
foundation for future research into more complex Diophantine equations. 
 

Conclusions  
 This research investigated the Diophantine equation 𝑝𝑥 + 𝑛𝑦 = 𝑧2 and proved that it has solutions of 
the form (𝑝, 𝑛, 𝑥, 𝑦, 𝑧) ∈ {(3, 𝑛, 1,0,2) ∪ (3, 2 ∙ 3𝑠 + 1, 2𝑠, 1, 3𝑠 + 1)}  where 𝑛, 𝑠, 𝑥, 𝑦  and 𝑧  are n o n - n e g a t i v e 
integer and 𝑛 ≡ 7(mod 12). The proof relies on fundamental concepts in number theory, properties of exponential 
equations, and the application of Legendre's Theorem,  which plays a crucial role in the reasoning. Readers who 
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are interested may further explore the structure of the proof by considering various values of 𝑛 and 𝑝. Furthermore, 
the results of this research may serve as useful examples in mathematics education, particularly in topics related 
to number theory and Diophantine equations. 
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