Efficiency of food waste management and treatment using an aerated and temperature-controlled in-vessel bioreactor composting system
Main Article Content
Abstract
Given the continuously increasing amount of food waste and inefficient management practices, this study aimed to evaluate the performance of a prototype semi-automated in-vessel bioreactor composting machine capable of controlling temperature, aeration, and pile turning, in comparison with conventional pile composting over a 7-day period. The results showed that the composting machine effectively maintained thermophilic conditions, reduced the moisture content of the composting material to 23.5%, increased seed germination to 46.8%, and produced organic material with particle sizes smaller than 6 mm from the first day of composting. In contrast, conventional pile composting exhibited a higher moisture content (50.54%), a lower germination rate (8.16%), and incomplete organic matter degradation. Chemical and physical analyses revealed that compost produced by the semi-automated system contained higher total macronutrient content (NPK, 3.97%), organic matter (34.63%), and a favorable C/N ratio of 13, meeting organic fertilizer standards and significantly outperforming conventional composting. These findings demonstrate that a prototype semi-automated in-vessel bioreactor composting system is effective in accelerating food waste decomposition, reducing moisture content, and producing high-quality organic amendment. Therefore, this prototype technology shows strong potential for on-site food waste management, supporting resource recycling and reducing environmental impacts.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความลิขสิทธิ์ที่ได้รับการตรีพิมพ์เป็นลิขสิทธิ์ของวารสารเกษตรอนุภาคภูมิภาคลุ่มน้ำโขง คณะเกษตรและเทคโนโลยี มหาวิทยาลัยนครพนม
References
บรรจง อูปแก้ว, อภิรยา เทพสุุคนธ์, อนุชา จันทรบูรณ์, วราวุฒิ โล๊ะสุข, วสุธร บัวคอม, ณัฐกร ไชยแสน, กัญญ์ณพัชญ์ ดวงแก้ว และ กัลยา พงสะพัง. (2568). อิทธิพลของปุ๋ยอินทรีย์ที่มีต่อปริมาณธาตุอาหารในดิน การออกดอก และคุณภาพผลผลิตของโกโก้. วารสารเกษตรอนุภูมิภาคลุ่มน้ำโขง, 2(1), 14–26.
เบญจมาส โชติทอง. (2565). ลดโลกร้อน เริ่มต้นจาก "จานอาหาร" ของเรา. สถาบันสิ่งแวดล้อมไทย. สืบค้น วันที่ 17 พฤศจิกายน 2568, จาก https://www.tei.or.th/th/article_detail.php?bid=157
Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. Bioresource Technology, 100(22), 5444–5453. https://doi.org/10.1016/j.biortech.2009.05.016
Dharnaik, A. S., & Pol, P. (2024). A review on composting of organic solid waste. IOP Conference Series: Earth and Environmental Science. 1326, 012130. https://doi.org/10.1088/1755-1315/1326/1/012130
Du, S., Ding, S., Wen, X., Yu., M., Zou, X., & Wu, D. (2024). Investigating inhibiting factors affecting seed germination index in kitchen waste compost products: Soluble carbon, nitrogen, and salt insights. Bioresource Technology, 406, 130995. https://doi.org/10.1016/j.biortech.2024.130995
Epstein, E. (2011). Industrial composting: Environmental engineering and facilities management. 1st Edition. CRC Press: UK.
Haug, R.T. (2018). The practical handbook of compost engineering. 1st Edition. Routledge: UK.
Liu, Z., Wang, X., Wang, F., Bai, Z., Chadwick, D., Misselbrook, T., & Ma, L. (2020). The progress of composting technologies from static heap to intelligent reactor: Benefits and limitations. Journal of Cleaner Production, 270, 122328. https://doi.org/10.1016/j.jclepro.2020.122328
López, M. J., Jurado, M. M., López-González, J. A., Estrella-González, M. J., Martínez-Gallardo, M. R., Toribio, A., & Suárez-Estrella, F. (2021). Characterization of thermophilic lignocellulolytic microorganisms in composting. Frontiers in Microbiology, 12, 697480. https://doi.org/10.3389/fmicb.2021.697480
Lu, S. G., Imai, T., Li, H. F., Ukita, M., Sekine, M., & Higuchi, T. (2001). Effect of enforced aeration on in-vessel food waste composting. Environmental Technology, 22(10), 1177–1182. https://doi.org/10.1080/09593332208618200
Luangwilai, T., Sidhu, H., & Nelson, M. (2021). Understanding the factors affecting the self-heating process of compost piles: Two-dimensional analysis. Proceedings Engineering Mathematics and Applications Conference, 63, C15–C29. https://doi.org/10.21914/anziamj.v63.17119
Manyapu, V., Shukla, S., Kumar, S., Rajendra K. (2017). In-vessel composting: a rapid technology for conversion of biowaste into compost. Open Access International Journal of Science and Engineering, 2, 58–63.
Nkansah, J. B., Oduro-Kwarteng, S., Essandoh, H. M. K., & Kuffuor, R. A. (2022). Enhancing food waste compost quality with nutrient amendments. International Journal of Recycling of Organic Waste in Agriculture, 11, 15–31. https://doi.org/10.30486/ijrowa.2021.1901356.1121
Sołowiej, P., Pochwatka, P., Wawrzyniak, A., Łapinski, K., Lewicki, A., & Dach, J. (2021). The effect of heat removal during thermophilic phase on energetic aspects of biowaste composting process. Energies, 14(4), 1183.https://doi.org/10.3390/en14041183
Wang, G., Kong, Y., Yang, Y., Ma, R., Shen, Y., Li, G., & Yuan, J. (2022a). Y. Superphosphate, biochar, and a microbial inoculum regulate phytotoxicity and humification during chicken manure composting. The Science of the Total Environment, 2022, 153958. http://dx.doi.org/10.2139/ssrn.3985470
Wang, H., Qin, Y., Xin, L., Nan, Q., Xu, X., Zhao, C., Wu, W. (2024). Pilot-scale study of innovative mechanically-enhanced dynamic composting for treating kitchen waste. Bioresource Technology, 394, 130176. https://doi.org/10.1016/j.biortech.2023.130176
Wang, X., He, X., & Liang, J. (2022b). Succession of Microbial Community during the Co-Composting of Food Waste Digestate and Garden Waste. International Journal of Environmental Research and Public Health, 19(16), 9945. https://doi.org/10.3390/ijerph19169945
Zucconi, F., Pera, A., Forte, M., & De Bertoldi, M. (1981). Evaluating compost maturity by phytotoxicity tests. Compost Science, 22(2), 43–50.