Ionome Visualization of Sugarcane White Leaf Disease (SCWL) Infected Sugarcane Using Micro X-ray Fluorescence Spectroscopy

Authors

  • Pimpilai Saengmanee Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus
  • Parichart Burns National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA)
  • Jutatape Watcharachaiyakup Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus
  • Suriyaphong Nilsang Faculty of Engineering, King Mongkut’s University of Technology Thonburi (KMUTT)
  • Sonthichai Chanpreme Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI)

Keywords:

sugarcane, sugarcane white leaf disease , phytoplasma, ionomics, element

Abstract

Background and Objectives : Sugarcane White leaf (SCWL) is an important disease that severely affects sugarcane production in Thailand. The infected sugarcane plants could either become symptomatic or remain symptomless (asymptomatic). The infected cutting can be used for a new plantation causing disease to spread. There are very few studies on the impact of SCWL phytoplasma to infected sugarcane particularly at the elemental level making farm management and nutrient supplementation difficult. This study aims to examine the impact of SCWL phytoplasma on nutrient distribution in sugarcane leaves and to evaluate the utilization of micro x-ray fluorescence spectroscopy for the identification of nutritional elements.

Methodology : Ten-month old sugarcane plants cv. Khon Khan 3 from the plantation in Lao Khwan district, Kanchanaburi province, Thailand, were used in this study. Leaf samples were collected from 15 sugarcane plants (one leaf per plant) with SCWL disease symptoms. These plants were divided based on the severity of the symptoms into 3 levels (5 plants per symptomatic level). Leaf samples were also collected from 10 sugarcane plants (one leaf per plant) without any symptoms of SCWL disease. The presence of SCWL phytoplasma in the samples was determined by Polymerase chain reaction (PCR). Micro x-ray fluorescence spectroscopy (μ-XRF) was used to determine element contents in healthy (free of SCWL phytoplasma), infected sugarcane without any SCWL disease symptoms and symptomatic leaf samples. Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) analysis was used as a comparative method. The data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison tests and Pearson’s correlation method.      

Main Results : SCWL phytoplasma was detected in all fifteen symptomatic samples and 5 asymptomatic samples. Six elements ranked based on the amount included K (the highest amount), Si, Ca, S, P, and Fe (the lowest) respectively. Correlation analysis showed a significant correlation between SCWL symptom severity and two elements; silicon (Si) and sulphur (S). Si content had a significantly strong negative correlation (r = -0.824) while sulphur (S) content had a significantly strong positive correlation (r = 0.803) with disease severity. In addition, the predictability of the calibrated model from micro x-ray and ICP-OES showed Mean Absolute Percentage Error (MAPE) of Si, K, and Ca was under 20% (15.52%, 10.44% and 9.69%, respectively). This result indicated that micro x-ray method has measurement capabilities similar to the ICP-OES method.

Conclusions  :  SCWL phytoplasma impacted element contents particularly Si and S in infected sugarcane. In addition, micro x-ray was applicable for the determination of element changes in sugarcane leaves. It was a reliable, rapid approach for visualizing quantitative changes at the cellular level and highlighted the impact of SCWL phytoplasma on sugarcane during the transition from asymptomatic to symptomatic stages. The outcome could be beneficial in farm management and nutrient supplementation of sugarcane plantations to delay disease progression.

References

Akhtar, N. I. S. H. A. R., Chandra, R., & Mazhar, Z. (2018). Silicon based defence mechanism in plants. Trends in Biosciences, 11, 32.

Amtmann, A., Troufflard, S., & Armengaud, P. (2008). The effect of potassium nutrition on pest and disease resistance in plants. Physiologia plantarum, 133(4), 682-691.

Awasthi, S., Chauhan, R., & Srivastava, S. (2022). The importance of beneficial and essential trace and ultratrace elements in plant nutrition, growth, and stress tolerance. In Plant nutrition and food security in the era of climate change (pp. 27-46). Academic Press.

Brouwer, S. M., Lindqvist‐Reis, P., Persson, D. P., Marttila, S., Grenville‐Briggs, L. J., & Andreasson, E. (2021). Visualising the ionome in resistant and susceptible plant–pathogen interactions. The Plant Journal, 108(3), 870-885.

Chowdhury, M. S. R., Rahman, M. A., Nahar, K., Dastogeer, K. M., Hamim, I., & Mohiuddin, K. M. (2022). Mineral nutrient content of infected plants and allied soils provide insight into wheat blast epidemics. Heliyon, 8(2), e08966.

Dayasena, Y.A.P.K., Panda, P., Thushari, A.N.W.S., & Rao, G.P. (2021). Geographical distribution and identification of phytoplasma strain associated with sugarcane white leaf disease in Sri Lanka. Sugar Tech, 23(6), 1351-1358.

Frazão, J. J., Prado, R. D. M., de Souza Júnior, J. P., & Rossatto, D. R. (2020). Silicon changes C: N: P stoichiometry of sugarcane and its consequences for photosynthesis, biomass partitioning and plant growth. Scientific Reports, 10(1), 12492.

Garcia, F. H. S., Domingues-Júnior, A. P., Lima Nogueira, M., de Paula, S., Ferreira, J., Lavres, J., Martins, S. J., Fernie, A. R., & Kluge, R. A. (2023). Impact of Leifsonia xyli subsp. xyli titer on nutritional status, and metabolism of sugar cane. Plant and Soil, 493(1), 341-354.

Goyal, K., Singh, N., Jindal, S., Kaur, R., Goyal, A., & Awasthi, R. (2022). Kjeldahl Method. Advanced Techniques of Analytical Chemistry: Volume 1, 1, 105-112.

Gulzar, N., Ali, S., Shah, M. A., & Kamili, A. N. (2021). Silicon supplementation improves early blight resistance in Lycopersicon esculentum Mill. by modulating the expression of defense-related genes and antioxidant enzymes. 3 Biotech, 11, 1-13.

Guerra, M. B. B., de Almeida, E., Carvalho, G. G., Souza, P. F., Nunes, L. C., Júnior, D. S., & Krug, F. J. (2014).Comparison of analytical performance of benchtop and handheld energy dispersive X-ray fluorescence systems for the direct analysis of plant materials. Journal of Analytical Atomic Spectrometry, 29(9), 1667-1674.

Handi, El, K., Hafidi, M., Habbadi, K., El Moujabber, M., Ouzine, M., Benbouazza, A., Sabri, M., & Achbani, E.H.(2021). Assessment of ionomic, phenolic and flavonoid compounds for a sustainable management of Xylella fastidiosa in Morocco. Sustainability, 13(14), 7818.

Kim, S. G., Kim, K. W., Park, E. W., & Choi, D. (2002). Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92(10), 1095-1103.

Kovács, S., Kutasy, E., & Csajbók, J. (2022). The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants, 11(9), 1223.

Künstler, A., Gullner, G., Ádám, A. L., Kolozsváriné Nagy, J., & Király, L. (2020). The versatile roles of sulfur-containing biomolecules in plant defense A road to disease resistance. Plants, 9(12), 1705.

Kumar, A., Anju, T., Kumar, S., Chhapekar, S. S., Sreedharan, S., Singh, S., Choi, S. R., Ramchiary, N., & Lim, Y. P. (2021). Integrating omics and gene editing tools for rapid improvement of traditional food plants for diversified and sustainable food security. International Journal of Molecular Sciences, 22(15), 8093.

Lahner, B., Gong, J., Mahmoudian, M., Smith, E. L., Abid, K. B., Rogers, E. E., Guerinot, M. L. & Salt, D. E. (2003). Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nature Biotechnology, 21(10), 1215-1221.

Martins, M. T. B., de Souza, W. R., da Cunha, B. A. D. B., Basso, M. F., de Oliveira, N. G., Vinecky, F., Martins, de Oliveira, P. A., Arenque-Musa, B. C., de Souza, A. P., & Buckeridge, M. S. (2016). Characterization of sugarcane (Saccharum spp.) leaf senescence: implications for biofuel production. Biotechnology for Biofuels, 9, 1-17.

McCormick, A. J., Cramer, M., & Watt, D. (2006). Sink strength regulates photosynthesis in sugarcane. New phytologist, 171(4), 759-770.

Mishra, N., Dwivedi, S.P., Tiwari, A.K., Prajapati, M.R., & Singh, J. (2022). Characterisation of phytoplasma associated with sugarcane white leaf disease in Uttar Pradesh, India. Archives of Phytopathology and Plant Protection, 55(1), 19-27.

Nicolas, O., Charles, M. T., Jenni, S., Toussaint, V., Parent, S. É., & Beaulieu, C. (2019). The ionomics of lettuce infected by Xanthomonas campestris pv. vitians. Frontiers in plant science, 10, 351.

Office of The Cane and Sugar Board. (2017).Retrieved from: https://www.ocsb.go.th/wp-content/uploads/2023/03/9342-2176.pdf.

Oliver, J. E., Sefick, S. A., Parker, J. K., Arnold, T., Cobine, P. A., & De La Fuente, L. (2014). Ionome changes in Xylella fastidiosa–infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates. Molecular plant-microbe interactions, 27(10), 1048-1058.

Porfido, C., Köpke, K., Allegretta, I., Bandte, M., von Bargen, S., Rybak, M., Falkenberg, G., Mimmo, T., Cesco, S., Büttner, C., & Terzano, R. (2023). Combining micro-and portable-XRF as a tool for fast identification of virus infections in plants: The case study of ASa-Virus in Fraxinus ornus L. Talanta, 262,124680.

Quan, M. V., Liem, N. V., Man, L. Q., Huy, N. Q., Le, X. V., Cuong, H. V., Nguyen, D. T., Thao, H. T. B., Hung, N. V., Huy, N. D., & Weintraub, P. G. (2020). A new phytoplasma strain associated with the sugarcane white leaf disease in Vietnam. Phytopathogenic Mollicutes, 10(1), 60-68.

Ramouthar, P. V., Caldwell, P. M., & Mcfarlane, S. A. (2015). Effect of silicon on the severity of brown rust of sugarcane in South Africa. European Journal of Plant Pathology, 145, 53-60.

Rodrigues, F. Á., McNally, D. J., Datnoff, L. E., Jones, J. B., Labbé, C., Benhamou, N., Menzies, J. G., & Bélanger, R. R.(2004). Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology, 94(2), 177-183.

Roddee, J., Kobori, Y., & Hanboonsong, Y. (2018). Multiplication and distribution of sugarcane white leaf phytoplasma transmitted by the leafhopper, Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae), in infected sugarcane. Sugar Tech, 20(4), 445-453.

Saengmanee, P., Burns, P., Watcharachaiyakup, J., Lertsuchatavanich, U., & Chanprem, S. (2023). Specificity and sensitivity of sugarcane white leaf (SCWL) phytoplasma molecular detection. In The 2nd International Conference on Cane and Sugar 2023 Towards BCG Economy; Smart Farm to Bio Industry. (pp. 125). at Asawin Grand Convention Hotel Bangkok, Thailand.

Salt, D. E., Baxter, I., & Lahner, B. (2008). Ionomics and the study of the plant ionome. Annual Review of Plant Biology, 59, 709-733.

Sampaio, A., Pegos, V. R., Oshiro, E. E., & Balan, A. (2017). The periplasmic binding protein NrtT affects xantham gum production and pathogenesis in Xanthomonas citri. Federation of European Biochemical Societies, 7(10), 1499-1514.

Santos, A. D. F., Matos, R. A., Andrade, E. M., dos Santos, W. N., Magalhães, H. I., Costa, F. D. N., & Korn, M. D. G. A. 2017). Multielement determination of macro and micro contents in medicinal plants and phytomedicines from Brazil by ICP OES. Journal of the Brazilian Chemical Society, 28, 376-384.

Silalertruksa, T., & Gheewala, S. H. (2020). Competitive use of sugarcane for food, fuel, and biochemical through the environmental and economic factors. The International Journal of Life Cycle Assessment, 25, 1343-1355.

Tófoli de Araújo, F., Bolanos-Garcia, V.M., Pereira, C.T., Sanches, M., Oshiro, E.E., Ferreira, R.C., Chigardze, D.Y., Barbosa, J.A.G., de Souza Ferreira, L.C., Benedetti, C.E., & Blundell, T.L. (2013). Structural and physiological analyses of the alkanesulphonate-binding protein (SsuA) of the citrus pathogen Xanthomonas citri. PLoS One, 8(11), e80083.

Tran‐Nguyen, L., Blanche, K.R., Egan, B., & Gibb, K.S. (2000). Diversity of phytoplasmas in northern Australian sugarcane and other grasses. Plant Pathology, 49(6), 666-679.

Tripathi, R., Tewari, R., Singh, K. P., Keswani, C., Minkina, T., Srivastava, A. K., De Corato, U., & Sansinenea, E.(2022). Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Frontiers in Plant Science, 3116.

Vogel-Mikuš, K., & Pongrac, P. (2022). Imaging of potassium and calcium distribution in plant tissues and cells to monitor stress response and programmed cell death programmed cell death (PCD). In Plant Proteases and Plant Cell Death: Methods and Protocols (pp. 233-246). New York, NY: Springer US.

Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International journal of molecular sciences, 14(4), 7370-7390.

Wang, X.Y., Zhang, R.Y., Li, J., Li, Y.H., Shan, H.L., Li, W.F., & Huang, Y.K. (2022). The diversity, distributionand status of phytoplasma diseases in China. Frontiers in Sustainable Food Systems, 6, 943080.

Wang, L., Pan, T., Gao, X., An, J., Ning, C., Li, S., & Cai, K. (2022). Silica nanoparticles activate defense responses by reducing reactive oxygen species under Ralstonia solanacearum infection in tomato plants. NanoImpact, 28, 100418

Wei-min, D., Ke-qin, Z., Bin-wu, D. U. A. N., Cheng-xiao, S., Kang-le, Z., Run, C., & Jie-yun, Z. (2005). Rapid determination of silicon content in rice. Rice Science, 12(2), 145-147.

Wichakan, K. (2023). Market Analysis: Sugarcane products in Thailand. Available online: https://www.researchgate.net/publication/370056504 Accessed 17 Aprill 2024

Williams, J. S., Hall, S. A., Hawkesford, M. J., Beale, M. H., & Cooper, R. M. (2002). Elemental sulfur and thiol Accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiology, 128(1), 150-159.

van der Zee, L., Corzo Remigio, A., Casey, L. W., Purwadi, I., Yamjabok, J., van der Ent, A., Kootstra, G., & Aarts, M. G.(2021). Quantification of spatial metal accumulation patterns in Noccaea caerulescens by X-ray fluorescence image processing for genetic studies. Plant Methods, 17, 1-16.

Yadeta, K. A., Elmore, J. M., Creer, A. Y., Feng, B., Franco, J. Y., Rufian, J. S., He, P., Phinney B., & Coaker, G. (2017). A cysteine-rich protein kinase associates with a membrane immune complex and the cysteine residues are required for cell death. Plant Physiology, 173(1), 771-787.

Yang, Y., Saand, M. A., Huang, L., Abdelaal, W. B., Zhang, J., Wu, Y., Li, J., Sirohi, M. H., & Wang, F. (2021). Applications of multi-omics technologies for crop improvement. Frontiers in Plant Science, 12, 563953.

Zhang, M. Y., Hong, D. K., Chen, Y. H., Gao, S. J., Fu, H. Y., Zheng, H. K., Fang, Y. & Wang, J. D. (2022). Synergistic effects of organosilicon and Cu (OH)2 in controlling sugarcane leaf scald disease. International Journal of Molecular Sciences, 23(21), 13532

Zhang, R. Y., Shan, H. L., Huang, Y. K., Wang, X. Y., Li, J., Li, W. F., Cang, X. Y., Yin, J., & Luo, Z. M. (2020). Survey of incidence and nested PCR detection of sugarcane white leaf in different varieties. Plant disease, 104(10), 2665-2668.

Zhang, R. Y., Wang, X. Y., Li, J., Shan, H. L., Li, Y. H., Huang, Y. K., & He, X. H. (2023). Complete genome sequence of “Candidatus Phytoplasma sacchari” obtained using a filter-based DNA enrichment method and Nanopore sequencing. Frontiers in Microbiology, 14, 1252709.

Downloads

Published

2024-06-27

How to Cite

Saengmanee, P., Burns, P., Watcharachaiyakup, J. . ., Nilsang, S. . ., & Chanpreme, S. . (2024). Ionome Visualization of Sugarcane White Leaf Disease (SCWL) Infected Sugarcane Using Micro X-ray Fluorescence Spectroscopy . Burapha Science Journal, 29(2), 543–562. Retrieved from https://li05.tci-thaijo.org/index.php/buuscij/article/view/227

Issue

Section

Research Articles