On the Diophantine Equation n^x-17^y=z^2

Authors

  • Suton Tadee Faculty of Science and Technology, Thepsatri Rajabhat University

Keywords:

Diophantine equation , non-negative integer solution , congruence

Abstract

Background and Objectives: to find the non-negative integer solutions gif.latex?\left&space;(&space;x,y,z&space;\right&space;) of the Diophantine equation gif.latex?n^{x}-17^{y}=z^{2}, where gif.latex?n  is a positive integer, which satisfies one of the following conditions: 1.gif.latex?n\equiv&space;0\left&space;(&space;mod&space;4\right&space;) 2.gif.latex?n\equiv&space;2\left&space;(&space;mod&space;4\right&space;)  and 3. gif.latex?n\equiv&space;3\left&space;(&space;mod&space;4\right&space;)and gif.latex?n\equiv&space;\pm&space;1,\pm&space;2,\pm&space;4,\pm&space;8\left&space;(&space;mod&space;17\right&space;) .

Methodology: to prove by using the basic concepts of number theory.

Main Results: If gif.latex?n\equiv&space;0\left&space;(&space;mod&space;4\right&space;), then the equation has the only non-negative integer solution gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;0,0,0&space;\right&space;). If gif.latex?n\equiv&space;2\left&space;(&space;mod&space;4\right&space;), then the non-negative integer solutions are gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;0,0,0&space;\right&space;) and gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;1,t,\sqrt{n-17^{t}}&space;\right&space;),  where gif.latex?t is a non-negative integer such that gif.latex?\sqrt{n-17^{t}} is an integer. Moreover, if gif.latex?n\equiv&space;3\left&space;(&space;mod&space;4\right&space;) and gif.latex?n\equiv&space;\pm&space;1,\pm&space;2,\pm&space;4,\pm&space;8\left&space;(&space;mod&space;17\right&space;), then the equation has the unique non-negative integer solution gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;0,0,0&space;\right&space;).

Conclusions: Let gif.latex?n be a positive integer. If gif.latex?n\equiv&space;0\left&space;(&space;mod&space;4\right&space;) or gif.latex?n\equiv&space;3\left&space;(&space;mod&space;4\right&space;) and gif.latex?n\equiv&space;\pm&space;1,\pm&space;2,\pm&space;4,\pm&space;8\left&space;(&space;mod&space;17\right&space;), then the equation has the unique solution gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;0,0,0&space;\right&space;). If gif.latex?n\equiv&space;2\left&space;(&space;mod&space;4\right&space;) , then  the equation has the solutions gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;0,0,0&space;\right&space;) and gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;1,t,\sqrt{n-17^{t}}&space;\right&space;), where gif.latex?t is a non-negative integer such that gif.latex?\sqrt{n-17^{t}} is an integer.

 

 

 

References

Buosi, M., Lemos, A., Porto, A.L.P., & Santiago, D.F.G. (2022). On the Exponential Diophantine Equation p^x-2^y = z^2 with p=k^2+4 a Prime Number. Palestine Journal of Mathematics, 11(4), 130-135.

Burshtein, N. (2019). A Short Note on Solutions of the Diophantine Equations 6^x+11^y = z^2 and 6^x-11^y = z^2 in Positive Integers x,y,z . Annals of Pure and Applied Mathematics, 20(2), 55-56.

Burshtein, N. (2020). All the Solutions of the Diophantine Equations 13^x-5^y = z^2, 19^x-5^y = z^2 in Positive Integers x,y,z . Annals of Pure and Applied Mathematics, 22(2), 93-96.

Burton, D.M. (2010). Elementary Number Theory. 7 th Edition. New York: McGraw-Hill.

Chuayjan, W., Thongnak, S., & Kaewong, T. (2023a). On the Exponential Diophantine Equation 3^x-5^y = z^2 . Annals of Pure and Applied Mathematics, 28(1), 25-28.

Chuayjan, W., Thongnak, S., & Kaewong, T. (2023b). On the Exponential Diophantine Equation 10^x-17^y = z^2 . Annals of Pure and Applied Mathematics, 28(1), 21-24.

Dima, A. (2022). A Computer-Based Approach to Solving the Diophantine Equation 7^x-3^y=100 .The Pump Journal of Undergraduate Research, 5, 161-164.

Elshahed, A., & Kamarulhaili, H. (2020). On the Diophantine Equation (4")^x-p^y = z^2 . WSEAS Transactions on Mathematics, 19, 349-352.

Gope, R.C. (2023). On the Exponential Diophantine Equation 27^x-11^y = z^2 .Journal of Physical Sciences, 28, 11-15.

Orosram, W., & Unchai, A. (2022). On the Diophantine Equation 2^2nx - p^y=z^2, where p is a prime. International Journal of Mathematics and Computer Science, 17(1), 447-451.

Rao, C.G. (2022). On the Exponential Diophantine Equation 23^x-19^y=z^2 . Journal of Physical Sciences, 27, 1-4.

Tadee, S. (2022). On the Diophantine Equation (p+6)^x - p^y=z^2 where p is a Prime Number with p=1(mod28) . Journal of Mathematics and Informatics, 23, 51-54.

Tadee, S. (2023a). A Short Note on Two Diophantine Equations 9^x-3^y = z^2 and 13^x - 7^y = z^2 . Journal of Mathematics and Informatics, 24, 23-25.

Tadee, S. (2023b). On The Diophantine Equation 3^x-p^y = z^2 where p is Prime. Journal of Science and Technology Thonburi University, 7(1), 1-6.

Tadee, S. (2023c). On the Diophantine Equation n^x - 5^y = z^2 where n=11(mod20) . Journal of KPRU Science Mathematics and Technology, 2(1), 57-60. (in Thai)

Tadee, S.,& Laomalaw, N. (2022). On the Diophantine Equations n^x - n^y = z^2 and 2^x - p^y = z^2 . Phranakhon Rajabhat Research Journal (Science and Technology), 17(1), 10-16. (in Thai)

Tadee, S., & Laomalaw, N. (2023). On the Diophantine Equation (p+2)^x - p^y = z^2, where p is prime and p=5(mod24) . International Journal of Mathematics and Computer Science, 18(2), 149-152.

Thongnak, S., Chuayjan, W., & Kaewong, T. (2019). On the Exponential Diophantine Equation 2^x - 3^y =x^2 . Southeast-Asian Journal of Sciences, 7(1), 1-4.

Thongnak, S., Chuayjan, W., & Kaewong, T. (2021). The Solution of the Exponential Diophantine Equation 7^x - 5^y = z^2 . Mathematical Journal by The Mathematical Association of Thailand Under The Patronage of His Majesty The King, 66(703), 62-67.

Thongnak, S., Kaewong, T., & Chuayjan, W. (2024). On the Exponential Diophantine Equation 11^x - 17^y = z^2 . International Journal of Mathematics and Computer Science, 19(1), 181-184.

Downloads

Published

2024-09-09

How to Cite

Tadee, S. (2024). On the Diophantine Equation n^x-17^y=z^2. Burapha Science Journal, 29(3 September-December), 902–909. retrieved from https://li05.tci-thaijo.org/index.php/buuscij/article/view/488