Evaluation of Antioxidant and Antibacterial Activities of Crude Extracts from Fruticose Lichen genus Usnea

Authors

  • Areerat Saisong Mahasarakham University, Thailand
  • Khwanyuruan Naksuwankul Mahasarakham University, Thailand
  • Kawinnat Buaruang Ramkhamhaeng University, Thailand
  • H. Thorsten Lumbsch Science & Education, The Field Museum, USA

Keywords:

antioxidant, antibacterial, crude extract , lichen

Abstract

Background and Objectives : This research aims to evaluate the potential of antioxidant and antibacterial potential of crude extracts from the lichen genus Usnea, along with the analysis of total phenolic, flavonoid, and tannin contents. The study investigates the effectiveness of these extracts against various bacterial strains and their potential applications in the pharmaceutical and food industries.

Methodology : The lichen genus Usnea was extracted using four solvents: 95% ethanol, acetone, ethyl acetate, and boiling water, to isolate bioactive compounds. Antioxidant activities were assessed using DPPH, ABTS, and FRAP assays. Antibacterial activities were evaluated using agar well diffusion and broth microdilution methods, with further analysis of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC).

Main Results : The results show the highest antioxidant activities in boiling water, with DPPH having an IC50 of 0.741±0.021 mg/ml, ABTS having an IC50 of 1.001±0.005 mg/ml, and the FRAP value being 27.927±0.129 mg FeSO4/g extract. The antibacterial properties of the ethanolic, acetone, and ethyl acetate extracts showed that they have a capacity to inhibit Bacillus cereus TISTR 1449, Staphylococcus epidermidis TISTR 2162, and Escherichia coli TISTR 527, but they are not effective against Pseudomonas aeruginosa TISTR 1287. Three stains showed ethanolic extract with MIC and MBC values of 20 mg/ml. The aqueous extract had MIC and MBC values of 40 mg/ml, resulting in a inhibition of B. cereus TISTR 1449. Furthermore, the ethanolic extract contained a high amount of total phenolic content (93.772±2.847 mg/g extract), total flavonoid content (36.847±0.613 mg/g extract), and tannin content (90.467±2.784 mg/g extract).

Conclusions : This study demonstrates the antioxidant and antibacterial effects of Usnea lichen extracts, providing insights for potential applications in various industries. These findings provide valuable insights for future development and application in pharmaceutical and food industries, enhancing the use of natural products for health-related benefits.

References

Aydin, S., Kinalioğlu, K., & Sökmen, B. B. (2018). Antioxidant, anti-urease, and anti-elastase activities of Usnea longissima Ach. Bangladesh Journal of Botany, 47(3), 429-435.

Buaruang, K., Boonpragob, K., Mongkolsuk, P., Sangvichien, E., Vongshewarat, K., Polyiam, W., & Lumbsch, T. (2017). A new checklist of lichenized fungi occurring in Thailand. MycoKeys, 23, 1.

Daupor, Saha, Chelong, Meechai & Waema. (2017). Determination of Total Flavonoid Content from Propolis Stingless Bee and Bacterial Inhibition of Escherichia coli in Soap Product. In The Sixth National Conference. Fatoni University, Yala. (in Thai)

Dieu, A., Mambu, L., Champavier, Y., Chaleix, V., Sol, V., Gloaguen, V., & Millot, M. (2020). Antibacterial activity of the lichens Usnea Florida and Flavoparmelia caperata (Parmeliaceae). Natural product research, 34(23), 3358-3362.

Farha, A. K., Yang, Q. Q., Kim, G., Li, H. B., Zhu, F., Liu, H. Y., & Corke, H. (2020). Tannins as an alternative to antibiotics. Food Bioscience, 38, 100751.

Fernandes, P. A., & Coimbra, M. A. (2023). The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydrate Polymers, 314, 120965.

Funk, E. R., Adams, A. N., Spotten, S. M., Van Hove, R. A., Whittington, K. T., Keepers, K. G., & Kane, N. C.(2018). The complete mitochondrial genomes of five lichenized fungi in the genus Usnea (Ascomycota: Parmeliaceae). Mitochondrial DNA Part B, 3(1), 305-308.

Goel, M., Singh, R., Kumar, A., & Singh, S. (2021). Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin-resistant Staphylococcus aureus (MRSA) by combination of oxacillin and a bioactive compound from Ramalina roesleri. Microbial Pathogenesis, 150, 104676.

Jannah, M., Hariri, M. R., Kasiamdari, R. S., & Handayani, N. S. N. (2021). The Use of DNA Barcoding and Phylogenetic Analysis to Improve Identification of Usnea spp. Based on ITS rDNA. Journal of Tropical Biodiversity and Biotechnology, 6(1), 58635.

Khwanruan Papong. (2012). Lichen for Traditional Medicine. Thai Journal of Botany, 4(1), 1-13.

Lagostina, E., Dal Grande, F., Andreev, M., & Printzen, C. (2018). The use of microsatellite markers for species delimitation in Antarctic Usnea subgenus Neuropogon. Mycologia, 110(6), 1047-1057.

Lamb, I. M. (1964). Antarctic lichens: I. The genera Usnea, Ramalina, Himantormia, Alectoria, Cornicularia.

Laverty, G., Gorman, S. P., & Gilmore, B. F. (2014). Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens, 3(3), 596-632.

Lertcanawanichakul, Chawawisit, & Hiransai. (2019). Biological Activities of Extracts from Some Local Plants in Pakpanang, Nakhon Si Thammarat Province: Antioxidant and Antibacterial Activity. Rajamangala University of Technology Srivijaya Research Journal, 11(2), 279-289. (in Thai)

Londoñe-Bailon, P., Sánchez-Robinet, C., & Alvarez-Guzman, G. (2019). In vitro antibacterial, antioxidant, and cytotoxic activity of methanol-acetone extracts from Antarctic lichens (Usnea antarctica and Usnea aurantiacoatra). Polar Science, 22, 100477.

Muangsan, Suwanwaree & Papong. (2018). Ecology, distribution and genetic diversity of the lichens genus Graphis in Thailand. (in Thai)

Naksuwankul. (2015). Taxonomy of Lichens. Khon Kaen: Siriphan (2497) Company Limited. (in Thai)

Nash III, T.H. (1996). Introduction. In: Nash III, T.H (ed). Lichen Biology. Cambridge University 94 Press.3

Nunez, C., Kostoulias, X., Peleg, A. Y., Short, F., & Qu, Y. (2023). A comprehensive comparison of biofilm formation and capsule production for bacterial survival on hospital surfaces. Biofilm, 5, 100105.

Pavithra, G. M., Vinayaka, K. S., Rakesh, K. N., Junaid, S., Dileep, N., TR, P. K., & Naik, A. S. (2013). Antimicrobial and antioxidant activities of a macrolichen Usnea pictoides G. Awasthi (Parmeliaceae). Journal of Applied Pharmaceutical Science, 3(8), 154-160.

Phonprapai C., & Oontawee S. (2019). Development of Extraction Process for Preparing High Anti-oxidant Extracts from Thai Herbs. Journal of Science and Technology, 8(5), 479-492. (in Thai)

Popovici, V., Nistor, M., Ene, C., & Barbu, M. (2022). Phenolic Secondary Metabolites and Antiradical and Antibacterial Activities of Different Extracts of Usnea barbata (L.) Weber ex FH Wigg from Călimani Mountains, Romania. Pharmaceuticals, 15(7), 829.

Rattana, S., & Sungthong, B. (2017). Antioxidant activities and total phenolic contents of methanolic extract from five fragrant flowers. In The 12th Mahasarakham University Research Conference, Mahasarakham. (in Thai) (pp. 360-365).

Römpp C.L. (1995). Version 1.0, Stuttgurt/New York: Georg Thieme Verlag (Germany).

Sae-chan, Rinkha, Lankaew, Visutthithada & Sriyam (2020). Journal of Innovative Technology Research, 4(2),12-21. (in Thai)

Srisukong A., Jantree K. & Hanpakphum S. (2016). The Study of Antibacterial in Weed Extracts. VRU Research and Development Journal Science and Technology, 11(1), 69-82. (in Thai)

Srivastava, P., Upreti, D. K., Dhole, T. N., Srivastava, A. K., & Nayak, M. T. (2013). Antimicrobial property of extracts of Indian lichen against human pathogenic bacteria. Interdisciplinary perspectives on infectious diseases, 2013(1), 709348.

Suwanphinij N. & Suwanphinij P. (1998). Culture Media and Microbial Culture. General Microbiology.Chulalongkorn University. 74–96. (in Thai)

Trentin, D. S., Silva, D. B., Amaral, M. W., Zimmer, K. R., Silva, M. V., Lopes, N. P., & Macedo, A. J. (2013). Tannins possessing bacteriostatic effect impair Pseudomonas aeruginosa adhesion and biofilm formation. PloS one, 8(6), e66257.

Wannawet & Thiangphet. (2017). Determination Antioxidant Activity and Total Phenolic Compounds of Bean Sprouts. In The Fourth National Conference Research and Development Institute, Kamphaeng Phet Rajabhat University. (in Thai)

Xiao, F., Zhu, Y., & Zhang, Q. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60-69.

Zhao, Y., Wang, M., & Xu, B. (2021). A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. Journal of Functional Foods, 80, 104283.

Downloads

Published

2024-11-06

How to Cite

Saisong, A., Naksuwankul, K. ., Buaruang, K. ., & Lumbsch, H. T. . . (2024). Evaluation of Antioxidant and Antibacterial Activities of Crude Extracts from Fruticose Lichen genus Usnea. Burapha Science Journal, 29(3), 1064–1080. Retrieved from https://li05.tci-thaijo.org/index.php/buuscij/article/view/542

Issue

Section

Research Articles